[Pomp-commits] r1189 - pkg/pomp pkg/pomp/R pkg/pomp/src pkg/pomp/tests www/vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Jun 5 20:33:13 CEST 2015


Author: kingaa
Date: 2015-06-05 20:33:12 +0200 (Fri, 05 Jun 2015)
New Revision: 1189

Added:
   pkg/pomp/src/mif2.c
Modified:
   pkg/pomp/DESCRIPTION
   pkg/pomp/NAMESPACE
   pkg/pomp/R/mif2.R
   pkg/pomp/tests/getting_started.Rout.save
   pkg/pomp/tests/ou2-mif2.Rout.save
   www/vignettes/mif2.html
Log:
- put some expensive mif2 computations into C for speed

Modified: pkg/pomp/DESCRIPTION
===================================================================
--- pkg/pomp/DESCRIPTION	2015-06-05 16:10:30 UTC (rev 1188)
+++ pkg/pomp/DESCRIPTION	2015-06-05 18:33:12 UTC (rev 1189)
@@ -1,7 +1,7 @@
 Package: pomp
 Type: Package
 Title: Statistical Inference for Partially Observed Markov Processes
-Version: 0.66-5
+Version: 0.66-6
 Date: 2015-06-05
 Authors at R: c(person(given=c("Aaron","A."),family="King",
 		role=c("aut","cre"),email="kingaa at umich.edu"),

Modified: pkg/pomp/NAMESPACE
===================================================================
--- pkg/pomp/NAMESPACE	2015-06-05 16:10:30 UTC (rev 1188)
+++ pkg/pomp/NAMESPACE	2015-06-05 18:33:12 UTC (rev 1189)
@@ -11,6 +11,7 @@
           SSA_simulator,
           R_Euler_Multinom,D_Euler_Multinom,R_GammaWN,
           mif_update,
+          mif2_computations,
           pfilter_computations,
           simulation_computations,
           iterate_map,traj_transp_and_copy,

Modified: pkg/pomp/R/mif2.R
===================================================================
--- pkg/pomp/R/mif2.R	2015-06-05 16:10:30 UTC (rev 1188)
+++ pkg/pomp/R/mif2.R	2015-06-05 18:33:12 UTC (rev 1189)
@@ -71,8 +71,7 @@
 
     ## perturb parameters
     pmag <- cooling.fn(nt,mifiter)$alpha*rw.sd[,nt]
-    params[rwnames,] <- rnorm(n=length(rwnames)*ncol(params),
-                              mean=params[rwnames,],sd=pmag)
+    params <- .Call(mif2_computations,params,pmag)
 
     if (transform)
       tparams <- partrans(object,params,dir="fromEstimationScale",

Added: pkg/pomp/src/mif2.c
===================================================================
--- pkg/pomp/src/mif2.c	                        (rev 0)
+++ pkg/pomp/src/mif2.c	2015-06-05 18:33:12 UTC (rev 1189)
@@ -0,0 +1,41 @@
+// -*- C++ -*-
+
+#include "pomp_internal.h"
+#include <Rdefines.h>
+
+SEXP mif2_computations (SEXP params, SEXP rw_sd)
+{
+  int nprotect = 0;
+  double *xp = 0, *rw, *xrw, *xs;
+  SEXP Pnames, rwnames, pindex;
+  int *dim, *pidx;
+  int nrw = 0, npars, nreps;
+  int j, k;
+
+  // unpack parameter matrix
+  PROTECT(params = duplicate(params)); nprotect++;
+  xp = REAL(params);
+  dim = INTEGER(GET_DIM(params)); npars = dim[0]; nreps = dim[1];
+  PROTECT(Pnames = GET_ROWNAMES(GET_DIMNAMES(params))); nprotect++;
+
+  // names of parameters undergoing random walk
+  PROTECT(rwnames = GET_NAMES(rw_sd)); nprotect++; 
+  nrw = LENGTH(rwnames); rw = REAL(rw_sd);
+
+  // indices of parameters undergoing random walk
+  PROTECT(pindex = matchnames(Pnames,rwnames,"parameters")); nprotect++; 
+  pidx = INTEGER(pindex);
+
+  GetRNGstate();
+
+  for (j = 0, xrw = rw; j < nrw; j++, pidx++, xrw++) {
+    for (k = 0, xs = xp+(*pidx); k < nreps; k++, xs += npars) {
+      *xs += rnorm(0,*xrw); 
+    }
+  }
+
+  PutRNGstate();
+
+  UNPROTECT(nprotect);
+  return(params);
+}

Modified: pkg/pomp/tests/getting_started.Rout.save
===================================================================
--- pkg/pomp/tests/getting_started.Rout.save	2015-06-05 16:10:30 UTC (rev 1188)
+++ pkg/pomp/tests/getting_started.Rout.save	2015-06-05 18:33:12 UTC (rev 1189)
@@ -180,12 +180,12 @@
 > mf <- mif2(mf)
 > mle <- coef(mf); mle
           r           K         phi         N.0       sigma 
-  4.3268371 219.8355772   1.0220978 200.0000000   0.6898461 
+  4.2778799 513.3313256   0.4662866 200.0000000   0.6687420 
 > logmeanexp(replicate(5,logLik(pfilter(mf))),se=TRUE)
-                     se 
--144.743699    0.301315 
+                       se 
+-147.8597938    0.2437791 
 > sim2 <- simulate(mf,nsim=10,as.data.frame=TRUE,include.data=TRUE)
 > 
 > proc.time()
    user  system elapsed 
- 77.812   0.492  80.066 
+ 77.892   0.420  80.054 

Modified: pkg/pomp/tests/ou2-mif2.Rout.save
===================================================================
--- pkg/pomp/tests/ou2-mif2.Rout.save	2015-06-05 16:10:30 UTC (rev 1188)
+++ pkg/pomp/tests/ou2-mif2.Rout.save	2015-06-05 18:33:12 UTC (rev 1189)
@@ -156,14 +156,14 @@
 > rbind(mle1=c(coef(m1),loglik=logLik(pfilter(m1,Np=1000))),
 +       mle2=c(coef(m2),loglik=logLik(pfilter(m1,Np=1000))),
 +       truth=c(coef(ou2),loglik=logLik(pfilter(m1,Np=1000))))
-      alpha.1    alpha.2   alpha.3 alpha.4 sigma.1 sigma.2 sigma.3 tau
-mle1      0.8 -0.4489983 0.3184109     0.9       3    -0.5       2   1
-mle2      0.8 -0.5080060 0.2439865     0.9       3    -0.5       2   1
-truth     0.8 -0.5000000 0.3000000     0.9       3    -0.5       2   1
-           x1.0     x2.0    loglik
-mle1  -1.442418 1.585629 -481.6106
-mle2  -2.696841 3.157511 -482.3154
-truth -3.000000 4.000000 -481.9939
+      alpha.1    alpha.2  alpha.3 alpha.4 sigma.1 sigma.2 sigma.3 tau      x1.0
+mle1      0.8 -0.5340410 0.253315     0.9       3    -0.5       2   1 -2.205438
+mle2      0.8 -0.5023659 0.222089     0.9       3    -0.5       2   1 -2.127518
+truth     0.8 -0.5000000 0.300000     0.9       3    -0.5       2   1 -3.000000
+           x2.0    loglik
+mle1  0.8962661 -481.2306
+mle2  4.4259163 -482.6415
+truth 4.0000000 -481.0150
 > 
 > m3 <- mif2(ou2,Nmif=3,start=guess1,Np=200,
 +            cooling.fraction=0.2,
@@ -182,4 +182,4 @@
 > 
 > proc.time()
    user  system elapsed 
- 68.756   0.088  69.231 
+ 65.808   0.092  66.257 

Modified: www/vignettes/mif2.html
===================================================================
--- www/vignettes/mif2.html	2015-06-05 16:10:30 UTC (rev 1188)
+++ www/vignettes/mif2.html	2015-06-05 18:33:12 UTC (rev 1189)
@@ -67,7 +67,7 @@
 
 
 <p>Licensed under the <a href="http://creativecommons.org/licenses/by-nc/3.0">Creative Commons attribution-noncommercial license</a>. Please share and remix noncommercially, mentioning its origin.<br /><img src="" alt="CC-BY_NC" /></p>
-<p>This document was produced using <code>pomp</code> version 0.66.3.</p>
+<p>This document was produced using <code>pomp</code> version 0.66.6.</p>
 <p>Iterated filtering is a technique for maximizing the likelihood obtained by filtering. In <code>pomp</code>, it is the particle filter that is iterated. The iterated filtering of <span class="citation">Ionides et al. (2006)</span> is implemented in the <code>mif</code> function. <span class="citation">Ionides et al. (2015)</span> describe an improvement on the original <span class="citation">(Ionides et al. 2006)</span> algorithm. This “IF2” algorithm is implemented in the <code>mif2</code> function.</p>
 <p>The following constructs the Gompertz example that is provided with <code>pomp</code> (see <code>?gompertz</code>) and extracts the parameters at which the data were generated.</p>
 <pre class="r"><code>require(pomp)
@@ -125,10 +125,10 @@
   truth=c(signif(theta.true[estpars],3),loglik=round(loglik.true,2))
   ) -> results.table</code></pre>
 <p>Convergence plots can be used to help diagnose convergence of the iterated filtering algorithm. Something like the following can be obtained by executing <code>plot(mf)</code>.</p>
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/pomp -r 1189


More information about the pomp-commits mailing list