[Pomp-commits] r1245 - pkg/pomp pkg/pomp/inst www/vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Thu Jul 2 17:02:12 CEST 2015


Author: kingaa
Date: 2015-07-02 17:02:12 +0200 (Thu, 02 Jul 2015)
New Revision: 1245

Modified:
   pkg/pomp/DESCRIPTION
   pkg/pomp/inst/NEWS
   www/vignettes/getting_started.html
   www/vignettes/mif2.html
   www/vignettes/pomp.pdf
Log:
- add SystemRequirements for Windows users
- update vignettes

Modified: pkg/pomp/DESCRIPTION
===================================================================
--- pkg/pomp/DESCRIPTION	2015-07-02 12:30:01 UTC (rev 1244)
+++ pkg/pomp/DESCRIPTION	2015-07-02 15:02:12 UTC (rev 1245)
@@ -1,7 +1,7 @@
 Package: pomp
 Type: Package
 Title: Statistical Inference for Partially Observed Markov Processes
-Version: 0.69-2
+Version: 0.69-3
 Date: 2015-07-02
 Authors at R: c(person(given=c("Aaron","A."),family="King",
 		role=c("aut","cre"),email="kingaa at umich.edu"),
@@ -20,6 +20,7 @@
 Description: Tools for working with partially observed Markov processes (POMPs, AKA stochastic dynamical systems, state-space models).  'pomp' provides facilities for implementing POMP models, simulating them, and fitting them to time series data by a variety of frequentist and Bayesian methods.  It is also a platform for the implementation of new inference methods.
 Depends: R(>= 3.0.0), methods
 Imports: stats, graphics, mvtnorm, deSolve, coda, subplex, nloptr
+SystemRequirements: for Windows users, Rtools (see http://cran.r-project.org/bin/windows/Rtools/)
 License: GPL(>= 2)
 LazyData: true
 MailingList: Subscribe to pomp-announce at r-forge.r-project.org for announcements by going to http://lists.r-forge.r-project.org/mailman/listinfo/pomp-announce.

Modified: pkg/pomp/inst/NEWS
===================================================================
--- pkg/pomp/inst/NEWS	2015-07-02 12:30:01 UTC (rev 1244)
+++ pkg/pomp/inst/NEWS	2015-07-02 15:02:12 UTC (rev 1245)
@@ -1,5 +1,10 @@
 _N_e_w_s _f_o_r _p_a_c_k_a_g_e '_p_o_m_p'
 
+_C_h_a_n_g_e_s _i_n '_p_o_m_p' _v_e_r_s_i_o_n _0._6_9-_2:
+
+        • Measles data from England and Wales, kindly provided by Ben
+          Bolker, are now included as ‘ewmeas’ and ‘ewcitmeas’.
+
 _C_h_a_n_g_e_s _i_n '_p_o_m_p' _v_e_r_s_i_o_n _0._6_8-_2:
 
         • When using ‘Csnippet’s, by default, the C codes and

Modified: www/vignettes/getting_started.html
===================================================================
--- www/vignettes/getting_started.html	2015-07-02 12:30:01 UTC (rev 1244)
+++ www/vignettes/getting_started.html	2015-07-02 15:02:12 UTC (rev 1245)
@@ -90,7 +90,7 @@
 </div>
 
 <p>Licensed under the <a href="http://creativecommons.org/licenses/by-nc/3.0">Creative Commons attribution-noncommercial license</a>. Please share and remix noncommercially, mentioning its origin.<br /><img src="" alt="CC-BY_NC" /></p>
-<p>This document was produced using <code>pomp</code> version 0.68.4.</p>
+<p>This document was produced using <code>pomp</code> version 0.69.3.</p>
 <div id="introduction" class="section level2">
 <h2>Introduction</h2>
 <p>This tutorial aims to help you get started using <code>pomp</code> as a suite of tools for analysis of time series data based on dynamical systems models. First, we give some conceptual background regarding the class of models—partially observed Markov processes—that <code>pomp</code> handles. We then discuss some preliminaries: installing the package and so on. Next, using a basic question about ecological population regulation as an example, we load some data and implement some models as <code>R</code> objects of class <code>pomp</code>. Finally, we illustrate some of the package’s capabilities by using its algorithms to fit and compare the models using various inference methods.</p>

Modified: www/vignettes/mif2.html
===================================================================
--- www/vignettes/mif2.html	2015-07-02 12:30:01 UTC (rev 1244)
+++ www/vignettes/mif2.html	2015-07-02 15:02:12 UTC (rev 1245)
@@ -67,7 +67,7 @@
 
 
 <p>Licensed under the <a href="http://creativecommons.org/licenses/by-nc/3.0">Creative Commons attribution-noncommercial license</a>. Please share and remix noncommercially, mentioning its origin.<br /><img src="" alt="CC-BY_NC" /></p>
-<p>This document was produced using <code>pomp</code> version 0.66.6.</p>
+<p>This document was produced using <code>pomp</code> version 0.69.3.</p>
 <p>Iterated filtering is a technique for maximizing the likelihood obtained by filtering. In <code>pomp</code>, it is the particle filter that is iterated. The iterated filtering of <span class="citation">Ionides et al. (2006)</span> is implemented in the <code>mif</code> function. <span class="citation">Ionides et al. (2015)</span> describe an improvement on the original <span class="citation">(Ionides et al. 2006)</span> algorithm. This “IF2” algorithm is implemented in the <code>mif2</code> function.</p>
 <p>The following constructs the Gompertz example that is provided with <code>pomp</code> (see <code>?gompertz</code>) and extracts the parameters at which the data were generated.</p>
 <pre class="r"><code>require(pomp)

Modified: www/vignettes/pomp.pdf
===================================================================
--- www/vignettes/pomp.pdf	2015-07-02 12:30:01 UTC (rev 1244)
+++ www/vignettes/pomp.pdf	2015-07-02 15:02:12 UTC (rev 1245)
@@ -1,58 +1,52 @@
 %PDF-1.5
 %¿÷¢þ
 1 0 obj
-<< /Type /ObjStm /Length 4552 /Filter /FlateDecode /N 97 /First 820 >>
+<< /Type /ObjStm /Length 4410 /Filter /FlateDecode /N 97 /First 820 >>
 stream
-xœÝ\ksÜ6²ý~¿m\)ÄØÚJ•mÅŽ×/ErüÈVêÖX¢¤ÙŒf”™‘×Ù_OãÁᐔDIcïÖ-Y"Aºû »ZU!cU¡]xîSpéua®¤/\ÁµÄ‹‚»
-ª‚{#
-ÎÁñ‡4tÔ¢Êj4)„
-m
-a=ê›Bx¶î
-)ʾJÚB C•x!­#.
-éН…’ځh¡uæ”"â…©Ð^ØÂhv®°Ü¢ìqEYV…ðÂJð%EaµT…”…«¨3U8tX §©3S8‹Q‚/‰	Wx‹qà‘÷Ô9Æ[	4Tk%/_iII܏·rôã¯<¸P(çø«0‰\Ð™+z‚9áĹenQAƒ2÷˜eÁ+UhPƬJ7
-cÑ ŒiCšjâGƒ²4ø‹I‚¸ /
-ÊŠ{Ž	Â
-µÂ8¹²˜-˜®0FÒ
-º6$"Nu4Éb5 ¬ÚB¸Ö!Ñ»
-3îé³aAY{tjAÙ`ô˜lÜ0lAÙ¨
-Ó
-ÊFcP¤
-F£­ec0ÃÖÒ
-Ɓq9–4āˆe[A ŽÓ
-é([^YÈ‹n  PÜxH”­„DHñ¬ÄÀ([¥ Õ²<8O7^ž(ŒËeAx¢ìI7]xEÚ
-]Æ4rÇIHU†ìAÙÉJ4n¼ûŸ¿ý­`¯êõäx²ž@I`A{s¹žMçõ
-ÆÊû“ST,¼ýó¢.ØÔŸ-N‹~$ž,ëÉzº˜ïMÖuñÝÞ_EÉ펛‡•úKUýåAª·XßL.Ί—õçi=ÇãW‹ã›Zî/Ç—G5š>ÛY<;[¬Ö«£åôb]ø²Ò¨ðvºžÂóùÑb¾ZÌÀ߃†»Åå|M3Î^LWÅ?ÈPi,:ü•qÔ.üåc¸V<^e.‹xUU*ççqZ"
-(_¼šT˨TK§kœQžfZär¬.xê$ö-/Ò
-W™^‹TŒ,•ÊÚ$¢™ÅÔÌètMõm"“xUéif)
-<MN*Ê4™xã&ÓÀcW2q*§2±(Uj­cg2±$mê<Í®t©7—æ+	¥Jd|dYåê>VSiJä‘ûTŽì ?Ò¼Æ÷*±¡L¾¦™IB•>‰%6͸²‰^ŸJüèÔد.¶·©_—øuI-|âÓÛXï·lUÑÐ’Ö>šÏkÒVY¥¹ÎšióMžž,…ª™ ‘+‘oEÎ:)²RŠ¬…"S™²È”e£÷™rÖƪ1™)ËLYfÊ2S–™²Ì”‹R™²Ê”Ucd™²Ê”U¦¬2e•)+ŸgõÉb¾®ç˜DhPì`w<<^|Á¼ÒÑZ`èo4ùKÔÍ0wP¯—Ë#ˆƒdñã—õ³Ã5A§'Ôx
-âTä	$—‹£Ãz
-ºlï)$ZYƒì?´…»H˜&ötº\­‹8ör²"’ɸRݽzETãÀÙ‡¿¢FUJZ–µ(}1¿œÍˆÿ×Ô¡w2±G“<ãÅâüâáÅäèw°ò §gi`i@:
-!#Z¥³P6OpËBÑY(:Eg¡è,îdéð]IÇð-éq'él;cLn3¦îɘÜ
-cy‚[™Ç[1ÕèORÂöŽ€ÕŽØumvý}صQmT˜´(Z9ļÞ
-óiµ‹Ì[}O0;bÊ´™²÷šÑ(;ˆ¿v7ìº6úº»aï†)·#¦ÚFäîeDÉP:“çwħnóiîŧàÓïl‘5mNQ¼¯mÆv´¾¸6ü¸;ÁO xX°_žç÷Ž(vŠ¾;[¯/þÊ-ÕåòáÉbyZãz±\ü³>Z—(>”/–Lj†â8ª ‡P@\H…TF‘f)ñÊV¥”¾%bLJC”~$j^~Z.^Nç¿7‘˜{2çC†íw´BŠöÔŠ»LíãWp‚ËóÉ!ìþ+L{û¢X//ë\{Ó[n2YÕ¡CöË£÷~úþõôüÓåê`qþzá_>¤1¡BÊãéü´ðy	'ŸíÉÙdYˆÈ/\´‹"²MnvpåB|3ÉÄÏìÄžßO×gÁÿ
-îÓÝdpÄÛ¥üKe¡ã3Ü<]Ýü›)j»¡j1cl¸æ{ƒ0ÉûéW£¨Âs¯Ý†øÄ@ŠîiŒíöpe‡˜@eÊ“åkû¹ Î¨œî]ºÏï›6`H¶Þ&Ò éýo–¯Ž‚Ãìe7.~ª§§gT„ôHŽ¤…ß±Gì1{Âö؏ì){Æ~bÏÙKöŠ½fû쀲·ìöŽ½gö‰±£Ål1Çßóó	;f5Yýåh69g'ìdŠŸkvk`§ìŒýyqVÏÙ”ý“ýÎflV¯VìœÍÙ‚-æ5»`dF³údÜE½œ.ŽÙìËźoÃ]|»d+¶ª?ƒêjú…­ÙúlY×lý¯»dŸÙ¿Øö'û7ûw½\<qF˜‡”•`Og“SJ %}íú!ÜúðÖc᥉ú-¾~:Õ”?ô-÷õä¼¾Öªž¯'³éÑ£ù)“
-ð1]­`cÁ‚Ž²Ãu}þ®àpòZæÒ²4ö!ÉHÁiëÙóÛ½/ßíuz>¨O/Ûöœý±ëìYwíñÑx{¾»Ms—MA…ô),)¹MŠ•m“1Œ±nú¥º"xmÎ;ý’IxÁ7¶l•,˜Æ’í6ôÓÊï\ºÏ6žÛ{ç¼y—1!âBà9'rÆK&ŸÌ3_ÓoqïíÀˆ3íÙèšþm%Bmb;¢«‹VØ-ô€s}-zü½HòòóŠ|`$“s˜øj2?f“5`å‚÷Õl²:cŸ–¸­×ÁäÓ}4ú.ò/f³Ér@çÇÔ¼žÇË—“Ù (Í2.Rƶ^öñ‰ i>2Ý„O41mœªWäíD˜:þ4kn6à…Bl=já–°bV'€;ŸÆo .NÑ6à]Îá0­ŽËú:ìãî
-ìÃ"Þ¹“œ»à×
-î"ø]AcÁóÁÏð>ø=þõí“_ÿþ}+ÞF½ìZ7¨'UöZ©äƘØ[ü2ÇÜ“ÇžÉCá {1¦Æ9+Û¥»´ºþÍU¿Îx®ç:÷Öó^,¤òèsÒ$ª±…Füz4jcQF¢÷]ZM§GÓåÑåy¼_OgÇ5nÉ<W¿DݘlyEW¢Oãš_žÓÓ›½¥6]Ì.WÙu"$Úv—n…!å|ê·±„[•±DoaIß)ÚÌ´¼$¦$CæÜEÉ—–Ì·ð$<‰xGiN’Ø°yÝJ>X[¤-ÜûBä( ØJS¤<úYlïCÛ
-Uj€gNc§ÈUW¦$ø3Ú–Zb粤Dœ1¦¸ŽŠ\ÇñänÍ“R%厞´(iŸO
-J?{ñøåÏOÖ‡‡‡³É|ý¿þS¶sŽégUöƒÏoã¬^÷ÓK7è5ü3ävnSr6åähnè¹o_Û­ì᱓£üÁç-ä%ÜýbHŠ£W6Šcxx#èZoGvW¸5jÛ­¡íðÚˆÝ.Ù.RÛ±ŽÒwrp~~±÷æݯ‰‡ÃɼÚA±çæ«éæÁÆnÜ€át£<76iCÒïG¾-õXl¤~ÐLÕ8›š6‘·	:½âCë®L\W&WÍǵb€g1TWù™½™ðæÝ‹×Ò§®Úp•õæ:¸ê9™A3FÁUu3˜Ü¢î—+ËàЦJp~[`ÖŽ…s}‚.Šì·A/DÜUÕDÓ1úïóÞŽhóµ
-OÖòó6\5œS’¬kT—¸ÉoÎêÝþg(’âßœbÛvJ¯M±ÅÐv(š½{ÛʲÝ/·æ³ÉÛªƒÄÊÆ÷žN©
- ±ïZý
-¶Ø6~8œ÷3•¸S•©lW0Ò•ÐæŽWÅ/òPtxUá¥D-:¨J¯ø-÷(Òù’t¨$)IJÒq’t˜$%IIÒ1’tˆ$!áùŒT:`ÄÓ©(Îó¡tÎ!ŸÄÚ!áUäåþ»bétOÚwÙüܵð”À[:å©DI‡% '¥”+¥wf¤ð¾éž˜¬8"蛬J.l!+]U¼¤ÓM;Œ,Òy³íC;Þ•t§kZO>8w%*4±é—•9‘#¹rCÒÕ%öíp%¥(Ä©\U*§èÀ^)(Mìy)í’«¡NÝÂx»Jç€Ð5L™—tÔ¸*é˜sj§<ñ>OBÑ–ªíñ¹éŠ–YfFaB FihW´òq%¸’&tÛåŠ"S€RæÈc¿WªÏ•v¶¤C˜]­òˆ£I€°@ˆVGKš;^ZµÓØ>õ6W0xíe+Òmh¡â¸zÚvá%¿ºä~ä^ùX\ð&XQÿ½¤ƒô˜$
-oÑÛ09$J#=í
-…eó¿a
-Ë”'ñ%ŒßänªÒˆÿÊE+y‰ ÐHL2}3 !g1L²ëƒ|SŽ÷¥úEà¡/MLIµ(,ªÚí‚1Þ—‹Ó(­À"&è[Ž’ŽK·[&È_ï½ýpøý“W¯žc%mÅ–9þmbKr`;®«îmÜæÂ6;ùÈÿpÀI&§Ã©¤…ãð¸7ýÀHC_Tmµ×½·ã~¥]Ãa¼ëƒ\§èË–pή›àéZ§<‹´åê;·ÝVñ˜9SRЊ±Ð¹ 8ò< ÁåtMÚá ª
-¶Mg楉šbšaÔ~`GToíAÄbìÑŽC>=‘v<ggîêõ$Äwi§ ž¡Œøîb5EÄÇÛ¥ .Š;„qMZÿl£³é)Z7iüÉ%b4¢ÛÏŽéêŠì˜ñm8]N¼oÇdù«VLÖÑÙë0­Ä<×vlæãޏÏßý„¶m"Ÿ{ÞØDß$ú›zcó-ù‡»ÿ3"Ãi:Ô<™Î[nm³Øn±ù±®¿£o\¿Þ†ŽhèÄ<K2éf‡Sƒ®ñ€‘nÕ•˜séUGn­ÃÆðmL`/èö3ÁäºÍ³:ïQBãê?q8ˆö·¶·È·ó_úù‰«L¡Šï`eÈz'¶Õt¬ˆÑyÈWoÞ¿ÿ‚èÛ‘i_Dÿ=ƒðƒ0c·K\[ko~;Z.¢ÕPí^Ìl4ÅF+¢´¢Èƒ„I”$´®ÀxëÀÂ@9¼Ÿ=šîq­üéZKh[“:ZfÕhèz±¿ÿa?`ãÖÎVÕ….ázÄòwwÙÚ÷=W9.ûé«
-ÙŠßX_ûM}…¶Ê
-,³¤WpE`fáã@@R‡Ï¯”ÌD
-å+¬ïCMµ•ZÅF©^c•ÍKj\?㺹LËcwY¬ÔË"/=<ꢫW­³Û	¶?V± Ä·Ý­¦Ã¶2oWs¡
-©š‚)Ò×h·ØÔþÆ.½–%}[¨¸FܤCrÍ‘_%L)vìҏÏ!pkà¼Ó'߈ÞèCfïJEŸA^ê±)¾p?ùñÑÁcèÂáÇ-ȧ¨úÐõ_F{/¾¿I'¬n›J,6¦r>_®†6꺫bt<¨u×
-zÇ8¶G>Ö
-ø
-žáÍVÐR|QÑ=Ðl¡›7äí»¦ ‹ô
-žöäok9;,(-÷!¥T…Ï×UIŸákJ§V»ÍdÝ6Ü”¤ÿ"…»Â«RÊÿPr”Sž~Ôõ%íK|¦n!N”ô=zf
-«GIß߆©[)úh=ý:TwžœÌù)XDWXKA±¿›¿Îi¨F¨^–^ô…ªlIÿ	AÔQ%ÞŠ©ÿ‡R•ýTX;ïÍ mEUôŸÎ`âT¨vá¥.éÓ÷ÿàüé@[YÒÿÄÒUáh„CÿCŒñ%}¨%)­™YÿJ…_rMô¸7=9©OÓfì?BX?™ÂÆèGçé˲Üä.ty³ ;"'
-v2Åïl§ôµŽ?¿¶9ž¿sÆ¡Aísþߢsá¶Oòîˆ,¹àKî~Š¶§dGšˆyØ"¤`iS/&_‹&÷JÛÇ1‘J	Ä$k4Ĩ”{%72¥b³™PZ%N*I.%m‡Yþ?šb\endstream
+xœÝ\ësÛ6¶ÿ¾¿m3ÄØÙéL7iš8õµÓ<z§sG±i[YR%9›î_Ši[¶åvwDZIÀáÁyá<Àˆ¢*dal¡
+!t¡Ï]a
+.¤*,.Ö®àÒ¢£àFâ¾*¸õ¼àøç
+,×c
+!+Up RZ\ÂŒ7…° l!¼Â8WHŽ÷…˜/ð~Eƒy!µC[Ò´e!½P…«P](]ˆ)”7€Z{ô]!	8Vø²*¬D§ä¸R[àêЖ…Õm¬Ë[ƒ—ŽpS8Ã饅óH9 ’¾ðÆW…Âz+®T¡°àJ-%p£+Q(¬²2ÖèÅí
+Z¯* Âp®qƒ•rIO@
+®è	É
+žh@æO4QÓÓ@=d¡Ab
+ÈÂl °p¢@/—TÓ€,È‹÷rf²R`ÈÕÁ ÈÊa‰•y
+q°ÈZ‚: 5n€1Sc4IP§.@Ö4€¬=HmÙT`§åtãuaÙ@2 at eºq ; eBhph 7F€â$F›–ÃOH¬(ಅT8‚l‰ÙUàAö ‰#ȯv€l+°+â–ã¯#	?çèX9O7à '‰…l$µV²d«ÁGÈ·"çÙZˆ¥'ÈŽº²‡Ty at v$²ãÎþåï/Ø~½ŒV£Â{hÐaÁ~º\MÆÓz	å	íƒÑ*6Þþ>¯öã'³³â»ïˆg‹z´Ϧ{£U]|³÷7Qqx% e ÌãJýµªþú(›-ŠoGóóâuýe\OñxvrÓ̃Åìäò¸ÆÔ¯‹ç³åjy¼ÏW…/+oÇ«	 ¼œϦËÙø=j°›]NWDqöj|²,þ—“ÖžÑE‡¿.ü…8‡+ЈW,^]zžÛ‘V²ªÂ5¶O³x_” É*·eê·©‰+dÇ#P¡Dº&¤têNoÑ	“ÚV'hñÊÓl—¯:]#²<âÀ㫥ϨÄwñ8X%ÌU‚©Ò»™O°âd•Ö£¤H×H¥Òl_…ŽW›^ž¨ª\z[B5‘QV	ŒÃu"º¬|jÇ~Ö’Ò"BÓÒ&ª¦¶JÃuº‘úó5RFf6TiX›é—˜¦匎Ól"t0
+–Œó]šçÓëaoã€_³RE=KBûd:­HX×Ø77@¦~•PÄM ѬIæ•ot¾1ù&C²Èe†Üˆfâí¯¤WÓU=’Ø1â0Ø’“ñèéì+ð¦'´ÁòÐàƒÑc³9¬—³ËÅ1–KkýþëêÅÑŠ, ÀG|Ùs §fš ý?>ªW€Ëöžƒbõ×À~÷]›x]…‡‘fÏNj媈Ëc¯GK™d7Ý«—5Ò„}øøFT¥„Êa.ÁËéådBxCoôNf›–“,d2>óÙÅüñ|tü¸<ê1RUIg’®$I’$éGR¤
+Iú“°'YO&,©ˆôC\á»áŠL¨G¦È´‚Ûòd–Ø™°è®°˜; ÖðÇÄE®µ²²Ü
+ÊFµNVð®èÆÅšd}¢˜A1P»AÞ¶¥ÀÞWôŽm¤ä=‘2;BªÍf{/6[“v“!ÆÚ¡ëÚèú{ÒÐí)×–6wikhè·,¿#<Û–»ËvµÆSàéw·µÚ®µt÷c´ßÑî’•.ÐÞ©í-®­î.*±vàܐQö;ÚQ¤ïìÍþNŠ`ìç×¹ÿÉ1tñÑ7ç«ÕüoŒ‘S.ŸÎg5®óÅìõñªDóQ€üt¶8AˆWR…‡‚Ujb0ÚÙK„ýðrTð³„%‚ZŠJÅÈ£ËO«€Åëñôsƒ´G]1´]ûíx²CÛ»öé><ÇÙâb4A\}°B°·¯ŠÕâ²Î£×oËSFË:¼ýüäÃǽ¾}3¾øt¹<œ]¼™ù׏iM˜…8÷d<=+2çûì|´(DÄŽmn'?8ÀaGx°&2áÁ3:ñÍïÇ'«s"¯Ö&qón?2øóíVþ¥¶Ðñ™^-Åu7ýfˆÚ®¡Z¬ÆPn×|o¨Zìkô°
+Ï=<m‚#BYº§5¶ç# ^H@‚ò^ ’¯íç”bítïÒ}îoæ !ÙêH¤Rÿ¯”/C”yfÏFóêñÙ95Á=â#Iá7ì	{Êž±=ö={Î^°ØKöší³7쀲#ö–ýÌÞ±÷lÄ>±cv<›Ì¦ø{q1b'¬f «¿OF씝ŽñïKÍN¡
+쌝³óßççõ”Ù?Øg6a“z¹dlÊfl6­ÙœÍI&õé*Þ-¸y½ÏNØoì·ËÙª½á.ö.Ø’-ë/€ºe+¶:_Ô5[ýsÆ.ÙöOö•ýÎþÅþU/fBt(ðXT²9QV*éӨ׏µ½>ê×Øý|<©)©é[!›ÑE}­V½\&ãã'Ó3DsÌÇx¹„Že2ÊŽVõÅ;Êܵե¥iìCâ‘‚+ÚÓç·{_¿ÛÛxóa}vÙÖçì:^§Ï­€6ê3ÂÁíõùî:Í]Vr.$°$ä6	þUºMÊ°vÓ/Á#Õˆ–è—TÂÃÎ7ºt•4˜Ö’õ6¼ª•û\ºÏ:žç}ç¼éË6!Ú…€sZOÄ(¬—T>©g¾6ªßÂ:ßہgüÚÔØTýÛr„æÄy!X®Mëa!.m끈âZëñ#{•,ÈO°!ÿÓ±"ØGX’ÑT|9šž°Ñ
+fåÓèøór2Zž³OÜÖ« òé>*ý¦å9™M&£ÅÚ ]œÐôz/¿]Ž&Fi’íÒ¥‘ëEß>‘išŽa™n²OD˜¶ª—äíD3uòiÒܬqö Q·d+&u2pã¸âµ©‹$ê¼Ë)¦åñlQ_gû¸»Âöa½ïÄçMã×r­£ñ»Æmkü8¿ÑøÞ7~Oyûì—¿m%èÛV/[éÆêIÕ7{¾çƘ³7ûy
+ÚŸPÄ“R³W˜ÂA÷b[3µ³ÒmÝeÖõ=Wý}˜õ\u~[Ï{±àÊ“/I’hDÇñë­QÛeKô~Ó
+-Çããñâøò"ޯƓ“·¤žËÏd¢îj˜‚):íxEWZŸÆ;
+&hzyñ	øÏnö–ÚÖh>¹\f׉,Q×]º•
+)§³0¾mK¸UÙ–èŽ-©bŸBàK<Ù4$nӐ©ó¦}mñ¼cO“hOà(
+›“$E‡Ø¯R£yb‘#7ë‹TÇ`‡ð S#[ŸÁ€”çF?÷ï}I­P¥†'–sÿ)rÕ•)Éü™J••Ñ…沤D&âÊÒsqËÈ5RR…C¦ÊšLe;És*÷§ê^*_ÈT’¹H–ŠA2Õ‚d
+Œe®A&ÊD9™‚B™¨'s-2QP&k+S,e®8äâi‚—ñ—¹¬”¯¹º”‹K¹¶”JK©ºÆsE‘%éüŽ’tœwÊJü.iºí„ÉÝV˜´¯J-Ö¤1Šþ[	Óz{=ÚûêÙ‡ýñÑd4]ý‡ãÛÚosÖüš(#WSZÛíe\÷ÓÎ'¬·üã†õÏPÄÐ…3'Ø)FXÃò¼:"èm¥NnåÊ¿lmš´e~è„ÿøG·z2äÇø~ŽMˆöžU74¿Â/U]¿”Jé¡ÛúÒÝí„WÕZãv²•ønë¡*}u+µNÖ¶[ –®„˜lè5w¼4ÊÊú’CŸE%1ŠKU%n©×ïz÷êÍ aˆmÎî:î9Ёh[it5¤o÷Ñâûå³ö´¡’¾†ß–¶·ãü<žt›²]«²	UÕd
+bf£{;ZÏ׶þf½ÏÏÛúÜ`N	À–ÞÓXÂ&Gó9cyûŸm¬†qÛ¤»÷µéöEêwÐ[Äûå
+}¶Q–»FJÙØO燌Tά7Fê]l›'8Ó÷¡•ø“ª3Æ–tÑ(7:t*UI§¾Œö¥R[š¯?eixé4§ƒ\¥P-OÊÊ’ÿ{¢Ì¹-%…­JøÙ4Îb¼ä1…ýà`?<B„'¥qd¡Lé*:øŒÝ
+1ãv»Ú®·ÚHEøNd„çlÈú‚ïZî'ÑÇI9[Ò!¿M¤°Ñ¶ÁJ(Y­«SkÜV%
+¬„2ðJÔ+¾UæA°rCüÓ¥÷=
+H‘òk"ø,éHÛC`Uõ±‚±(%¶Ý
+¬ê–7XÁ
+#+ÕÇJC®è$í&VšC®Ä+ãà_>­ü +Ø(Þ‹b¥…ɲ-ZyWVöAäJpP˜ú¾ªŠ‡MÆJiQ:»VëØúÍÞÛGß>Ûß	1jùÜù@MãsÓƾ±¥§cÁ7…Ñë¬u>‡<ìˆìÍ:œÎbȶàÞôF«pæG{}GwRkÃÙ³ë"›Ptáô´	Ç[­ÆSžh*³9‡×uç*Cn:5®EN‡«ä Ëðµ
+Ïî²IYm‚ª°é+|i¢¬ÐÑë°j?Pӝ¼sl6N0e™sÅ<U¹&ós8½õjüÞ”®'hÃï/Çð„9|ÞäØFv÷vÞ¤rÏÇÑkŸav“º]Âw%¸ý€š¨¥ˆ½¼R.à¾é«¶Ò[) îÊìu¡s+˱q]›]+Åǽï_¾û/8ìêDÕÓ‰¾JôÏ£l‡Çdwÿ‘Î…_Oó¤:W”YÚjѝ±þ±®_Å5®?n
+G4pbü™Tº©ê®GÐ5*Ñ­±tèKzÖ‘gëP¼
+ìÙ~%]W0©sM„½3ˆÿd‹!TÓè–E»ñÛ×~Üv•*T±Ïq9¨­ƒ·Qºbº­ˆ«´žìÿôþýûW¿_…ÀNŸL—ãõƒµ>(ÙWˆÍfÛL«kK­ñÍ‹¨54º—0ÝÃE¡ÙHEäVdyà0±’˜¶É0Þ*RkM)†âúÚfóˆN®´˜Ö!êÖ<«¶6]¯>ÛØIŠç"×:…æú¬ê¡·ÎŠ‹ûž¥Û.+䫵²¿q¼öëñ
+s•ØfI®xEj*9:IªAJf F!jµ¾ojªNÊ)6¡zƒ]6o©qÿŒûæ"m›Ûb¥®Øyìôðè›rÕ;ýÐeü¶‚C|­`ýÁ‘¸–ˆ™àÓr]Zú”XTÁ·U”tn—q@Ê€ub&iJÚh6£^kJú T/
+}îŠ8@ÑDz‚—ô-ô-=îýgß?9|
+F}ìhhæh£¡U)fÓßÞڵŮÓ7•-9ŽÍFŽ/ÆÓËeKR¯Ü²¢W@³7EÔnŠhwåÛŠ(¿Ám(¢Ó—Óùû©C®È
+J
+ƒ¬EÓ°…ÎÕUúÀU›¦!ÝÌñLž³ãúü-Bˆ÷èÃk
+¡«ð‘³*
+B MQiµmMõ²TÀ…êÙM–Ê«RþYé &I•‘¢b÷ H݆8Q’Fd¤³€”Þ©[	úÖrúŸuK¶˜>[ൕôÿP˯nÑal‡!§b¬‡²28ä”_’½´W¶ Mƒ”Q%‡y½Rÿ…\•}
+*ìÈÎ÷”MRŠLB€p*
+I©ËJý©º¶ÝJ2”ƒÒ÷ÏÙpáh…Cÿ;‰ñ%}Ä
+!)­Þòc£ÿ(AuMº7>=­˜Ó)¢jû‰ék¤<ò.àDÁNÇtÊ U·%Ÿm}fz§/b§“ÃÛ@~çàyÑ>+þGÐ
+RÔ9
+º#°ð=ƒû»#p”8)×"ä\©0³­E“l¥ÂRÌœÒ01«ZP¼HŸéQ²•¼Ñ”{-b|ò(qÕDÚ”¥ÝW]|»öùmƒpÿ)Ïendstream
 endobj
 99 0 obj
 << /Subtype /XML /Type /Metadata /Length 1340 >>
@@ -61,12 +55,12 @@
 <?adobe-xap-filters esc="CRLF"?>
 <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
 <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
-<rdf:Description rdf:about='uuid:5e797340-541b-11f0-0000-5dee1bc85d4e' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
-<rdf:Description rdf:about='uuid:5e797340-541b-11f0-0000-5dee1bc85d4e' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-06-26T08:28:16-04:00</xmp:ModifyDate>
-<xmp:CreateDate>2015-06-26T08:28:16-04:00</xmp:CreateDate>
+<rdf:Description rdf:about='uuid:48b9064d-58e4-11f0-0000-47d6bebdb8a1' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='GPL Ghostscript 9.05'/>
+<rdf:Description rdf:about='uuid:48b9064d-58e4-11f0-0000-47d6bebdb8a1' xmlns:xmp='http://ns.adobe.com/xap/1.0/'><xmp:ModifyDate>2015-07-02T10:36:33-04:00</xmp:ModifyDate>
+<xmp:CreateDate>2015-07-02T10:36:33-04:00</xmp:CreateDate>
 <xmp:CreatorTool>Raph Levien</xmp:CreatorTool></rdf:Description>
-<rdf:Description rdf:about='uuid:5e797340-541b-11f0-0000-5dee1bc85d4e' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:5e797340-541b-11f0-0000-5dee1bc85d4e'/>
-<rdf:Description rdf:about='uuid:5e797340-541b-11f0-0000-5dee1bc85d4e' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
+<rdf:Description rdf:about='uuid:48b9064d-58e4-11f0-0000-47d6bebdb8a1' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='uuid:48b9064d-58e4-11f0-0000-47d6bebdb8a1'/>
+<rdf:Description rdf:about='uuid:48b9064d-58e4-11f0-0000-47d6bebdb8a1' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>Inconsolata</rdf:li></rdf:Alt></dc:title></rdf:Description>
 </rdf:RDF>
 </x:xmpmeta>
                                                                         
@@ -74,537 +68,604 @@
 <?xpacket end='w'?>endstream
 endobj
 100 0 obj
-<< /Type /ObjStm /Length 2279 /Filter /FlateDecode /N 97 /First 876 >>
+<< /Type /ObjStm /Length 2585 /Filter /FlateDecode /N 97 /First 893 >>
 stream
-xœÝZkoÇýÞ_1@¿$(4œ×Gí¸5§†”6M ©µÄ†"’Üßs†KŠkÑ0)®l¥ ˆÙÇÙû¾wÖ«Œ²Æ)›®^yŸq
-J,û¢bf?ªÙçßòþ64ð÷KXüC±hà´\”c¬WÎÔ1A9[ØåV³¢r;`7=gåRS”+>*ëŒòœaEÃ{4œåˆ×”Ê‹å`Q>ª‹hdÎJÊ'îå²ò9sLQÁx<òFG˜Þ¢žõ‚•±M˜Š—S!âý-&„TgE40°qÈ eA²	ÿPH$ì'F°N°J6´ ˆ¸ÀG^‰'Áˆ„d%Ñ°•”ÈGIEÖؐѰœ^TôÜ¢ð‘X4øHäÇDBIP±M"*n*Q%’XI*hd•$szQ)s4hªÑªT_PR>ò**•
-Ú(*×׉
-OŠè‹-bF£`ðR<ɨŒÑhX•KÂ[$‡¥b Á(‡1¡$kîlq·8ÏÁYŸ8¸ Q08U°ØlÑÈœ*ÚXtŠPü2VŽHCIu0VÎDXeÞ¶(Ô¶ð!¥º’ˆRhêZDjbÁ“â(ü b‹g«à…¹’)‘3„òy·¼o)W–0!Ìåß}§§Óél¹Pÿ®biÔY•ÊÕµÔë[5x>›.›)FYêo^7ãá³ÙL4øE°"	¿Î1V…Õ¸³f1»š…âf?|Xþå|9\6UÒ뀗X»Š{í½™ÏFçÍ«Þ¼x©?7–XôûïÑüïMÃÕ/t+ômX¹/X©+? ÖE¡X•’!ì¢dé	rè@GBÞÅtkz‚*¦ËC˜~5® R—w@¶=ANv2¬ÄQrj]_°|V8–ï–t`Å£œÒ.Ɔ¾ æÔr$¥'X¹£"ùH»hc_°\–?Š±yµÝßêÛkërër«áÅ´W»K úòH¥óŠå¸W,»L¾íËK•Žš•‡¨Ù³Ùü¢™·LJÜë΋fÁ…6ŽõŸ¿þ‹‰öˆ jÄŸÓÛÉ„CÏš‡“4Ÿ­¶¿B:€³¾8@†#Ïoß-+ÇÓßÖ *ÍEU&hëð,ov†1xЈ´›k&>‰D¥=¢ÚE©âuA<õ1¦ä4d܇¬™èø\t†¦z)Ú€°½RÊí ”‹ZÜ}f£©ŠÞÛJ1nEªàt at pÞ',»Vˆ^¸Û`¹´K¼P'1ÏÒi„w¢‹íY®ÒX9ét–V3ÌÆŸoà@Rêbö”©ÓªÓçjð÷³W›£åx6]Ýúæj¹¼ùó`p3»¾Ñó“÷³ùeƒëÍ|ö Ðè~[5{÷›!OPv-r!mj>´ÀÔx\óâ :”=Eî,Q÷+…ÖwjâÛòòþÚmÚ ÇÚŠÁ‰¹¸=mOnøÌ€6çr_¡8àêSsáJÅTZ3—ߏ!w‰Ðê%¬ÛiÃû
-Û]dž»Ç´áXËTp»*4S‰`¢flÃûFÜÓ”“J}ÖrÏÂ!V€é€´PˆX@ÁËÆÌZŽî×¼@qëê$݁ŠE³8r ¨/kJ\„Ý…(¬{ﵘƒ¨ø9Y•ÊGZÜ:¾/?r2,0	äž•o¼NZr/aO'sgAÚ7a©î¾Y#8¾Vѱ þñ,È'h†€/ÀÊJ:¹Äú)¬nV"îI³Ï‹CEák
-Ø!ATÏb+Ü0—@—<úÉj–0»]Å×W%$t*!á!•§îbtÚ»;ϨKÏ¡¯ÜÇdØ‚~Â5lPÁ1þ8ÕpÑTŽ
-~ùéoçç?üéùëó_­g§£ÙÅxzYëÁ­zÏËçWÃ9º•Ë€<šo–³y=	¨ƒ~¶cxs·?w¶k í~ã‹åå2ÕBÏŒÚ÷·žó´(ßnôp1¢%õžoþÚŒ/¯Ö]ŒJòÍ ÔkæãÅo×ÃåÕàÝp>¸OoƒÅøz<ο­bR—9qœør2¼\@3+IŸ­µ·>KÐ.þvõðåxÒxªûVã§áusï¯–ÃÉxt:½œ4äóëñb)¨Ìªœ/›ëÔÌ‹[¢ðË\¦“`ñ6RÏ›ÚrÉ›ŽGÔ¤ž†iïËÆ4HvˆzŠˆ¿|ÀƒàA#rSYtÎõIÃ#Du*þPÇ#m¼Ó²˜§|«k[Ø“]•\×WÑY:•\yH%÷RV§M‘F ÁhaZ¤ÆEÅ=Ír at A.y
-’4Ñ]DìÎÃc„¿Súôw{+šÈ1á]`_süÂ	’ø½ErO2ŽæÃi—|ƒ‹Ùhp=œÞ'‹ÁüdÞLxÎÁÙ	Äf¡¯–ד?þ|Õœœœ¾yu©[{aá´#O®2j¿g¯¬bÿQòÌɶböuÄ;cüŒÁJ]?X³›ãžµ­³Ìö¤8¶†3Æ]³¯3¦Ø91Ž91Þ·ÎkîÓÓ	rl¼ð'¢Ý
-EÛh÷0Š~ÙRHb	úN|ðº~Ps âÏ	x7rڏúýõ‘ù6¯ñhðd·ì»BSÆ/n‚æɯ7·Ë×ñ¬pS6 2¼	Hq¨Ç‰Ó~O«>’™äá`¨Êì´a aÁ%ß“Š<%ú=½HßÃ3ñX§~£|ŒÐ»úù^@?±¿±ºÖ¿[#é²Î£;ÀJö¬¸LéŒ.×e÷ A§¼gXö§ˆ™
-¯a9«ðÐC`}Y'åøùlÒÑñ3]_ÌØ÷$0ÖþË%jµÏk~ä‹ÜWÒžýc…“ÈcÞ
-'E.ô4ƒžûðËÙ2õ¼&6‡@þ}81ìÆy¦a’㧞ߐÍÏ›¿æ«"IÝTr¿Œ§§ÓÅøîÆ‹ñû÷
-r&$Ǫܨ¼ê"¹þº¹ªë¾Cãíú56ËaÏÿ4¤Öendstream
+xœÕ[]\G}çWô#<ÐÛUÕÕ(ŠDAH Eë QŒ3„@صÖkÉü{Îéé™Y;å^ÓÎ
+Yrß;soÍéªêSÝ+IB
+’4ˆFVyŸƒ+ï=ˆ”Œ‹ÄO¥$~Õ‚á³=HuüǛΏE‚&ǃxA²D,¨9^—Œþ‚xЬ|¦õÊß©A«óá´‰HÇah
+–
+~7¦ÂÅ…áub#L͸À¨ã¢ó­̍WÌ
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/pomp -r 1245


More information about the pomp-commits mailing list