[Pomp-commits] r1024 - pkg/pompExamples/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Wed Dec 17 20:12:26 CET 2014
Author: kingaa
Date: 2014-12-17 20:12:26 +0100 (Wed, 17 Dec 2014)
New Revision: 1024
Modified:
pkg/pompExamples/man/budmoth.Rd
Log:
- update budmoth model documentation
Modified: pkg/pompExamples/man/budmoth.Rd
===================================================================
--- pkg/pompExamples/man/budmoth.Rd 2014-12-17 19:12:21 UTC (rev 1023)
+++ pkg/pompExamples/man/budmoth.Rd 2014-12-17 19:12:26 UTC (rev 1024)
@@ -4,8 +4,43 @@
\title{Larch budmoth model POMPs with real and simulated data.}
\description{
\code{pompExample(budmoth.sim)} constructs a \code{pomp} object containing the larch budmoth model and simulated budmoth density, parasitism rate, and food quality (needle-length) data.
- Four datasets, representing four distinct parameter regimes, are avaiable.
+ Four datasets, representing four distinct parameter regimes, are available.
+
+ The model has three state variables:
+ \enumerate{
+ \item{\eqn{Q_t} (measure of food quality on \eqn{[0,1]})}
+ \item{\eqn{N_t} (budmoth density)}
+ \item{\eqn{S_t} (fraction of budmoth larvae infected with parasitoids)}
+ }
+
+ There are three observables:
+ \enumerate{
+ \item{\eqn{\hat Q_t} (needle length)}
+ \item{\eqn{\hat N_t}}
+ \item{\eqn{\hat S_t}}
+ }
}
+\section{State process}{
+ Uncorrelated random effects, for \eqn{t=1,\dots,T}:
+ \deqn{\alpha_t \sim \mathrm{LogitNormal}(\mathrm{logit}(\alpha),\sigma_{\alpha}^2)}
+ \deqn{\lambda_t \sim \mathrm{Gamma}(\lambda,\sigma_{\lambda}^2)}
+ \deqn{a_t \sim \mathrm{LogNormal}(\log(a),\sigma_{a}^2)}
+ Note: \eqn{X} is \eqn{\mathrm{LogitNormal}(\mu,\sigma)} if \eqn{\mathrm{logit}(X)} is \eqn{\mathrm{Normal}(\mu,\sigma)}.
+
+ The inverse of \eqn{\mathrm{logit}} is \eqn{\mathrm{expit}}.
+ \pkg{R} functions \code{logit}, \code{expit}, \code{rlogitnorm}, \code{dlogitnorm} are defined in \pkg{pompExamples}.
+
+ The state process, for \eqn{t=1,\dots,T}:
+ \deqn{Q_{t} = (1-\alpha_{t})\frac{\gamma}{\gamma+N_{t-1}} +\alpha_{t}Q_{t-1}}
+ \deqn{N_{t} = \lambda_t N_{t-1} (1-S_{t-1})\exp\big\{-gN_{t-1}-\delta(1-Q_{t-1})\big\}}
+ \deqn{S_{t} = 1-\exp\left(\frac{-a_tS_{t-1}N_{t-1}}{1+a_twS_{t-1}N_{t-1}} \right)}
+}
+\section{Measurement process}{
+ For \eqn{t=1,\dots,T}:
+ \deqn{\hat Q_t \sim \mathrm{LogNormal}(\log(\beta_0+\beta_1Q_t),\sigma_Q)}
+ \deqn{\hat N_t \sim \mathrm{LogNormal}(\log(N_t),\sigma_N)}
+ \deqn{\hat S_t \sim \mathrm{LogitNormal}(\mathrm{logit}(uS_t),\sigma_S)}
+}
\examples{
## three regimes, high and low noise regimes for parasitism and tritrophic
bm <- pompExample(budmoth,envir=NULL)
@@ -14,4 +49,4 @@
plot(bm$para2)
plot(bm$tri)
}
-\keyword{datasets}
+\keyword{models}
More information about the pomp-commits
mailing list