[Pomp-commits] r765 - in pkg/pomp: . inst/doc

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Wed Aug 8 17:22:18 CEST 2012


Author: kingaa
Date: 2012-08-08 17:22:18 +0200 (Wed, 08 Aug 2012)
New Revision: 765

Added:
   pkg/pomp/inst/doc/bsmc-ricker-normal-prior.rda
   pkg/pomp/inst/doc/complex-sir-def.rda
   pkg/pomp/inst/doc/gompertz-pfilter-guess.rda
   pkg/pomp/inst/doc/plugin-C-code.rda
   pkg/pomp/inst/doc/plugin-R-code.rda
   pkg/pomp/inst/doc/ricker-comparison.rda
   pkg/pomp/inst/doc/ricker-first-probe.rda
   pkg/pomp/inst/doc/ricker-probe.rda
   pkg/pomp/inst/doc/sim-sim.rda
   pkg/pomp/inst/doc/sir-pomp-def.rda
   pkg/pomp/inst/doc/vectorized-C-code.rda
   pkg/pomp/inst/doc/vectorized-R-code.rda
Modified:
   pkg/pomp/DESCRIPTION
   pkg/pomp/inst/doc/advanced_topics_in_pomp.Rnw
   pkg/pomp/inst/doc/advanced_topics_in_pomp.pdf
   pkg/pomp/inst/doc/intro_to_pomp.Rnw
   pkg/pomp/inst/doc/intro_to_pomp.pdf
Log:
- store more intermediate results in the building of the vignettes to make vignette-checking quicker


Modified: pkg/pomp/DESCRIPTION
===================================================================
--- pkg/pomp/DESCRIPTION	2012-08-08 13:54:57 UTC (rev 764)
+++ pkg/pomp/DESCRIPTION	2012-08-08 15:22:18 UTC (rev 765)
@@ -2,7 +2,7 @@
 Type: Package
 Title: Statistical inference for partially observed Markov processes
 Version: 0.43-4
-Date: 2012-08-03
+Date: 2012-08-08
 Author: Aaron A. King, Edward L. Ionides, Carles Breto, Steve Ellner, Bruce Kendall, Helen Wearing, Matthew J. Ferrari, Michael Lavine, Daniel C. Reuman
 Maintainer: Aaron A. King <kingaa at umich.edu>
 URL: http://pomp.r-forge.r-project.org

Modified: pkg/pomp/inst/doc/advanced_topics_in_pomp.Rnw
===================================================================
--- pkg/pomp/inst/doc/advanced_topics_in_pomp.Rnw	2012-08-08 13:54:57 UTC (rev 764)
+++ pkg/pomp/inst/doc/advanced_topics_in_pomp.Rnw	2012-08-08 15:22:18 UTC (rev 765)
@@ -94,7 +94,7 @@
 
 \subsection{An unvectorized implementation using \R\ code only}
 Before we set about vectorizing the codes, let's have a look at what a plug-in based implementation written entirely in \R\ might look like.
-<<plugin-R-code,echo=T>>=
+<<plugin-R-code,echo=T,eval=T>>=
 data(ou2)
 ou2.dat <- as.data.frame(ou2)
 
@@ -118,10 +118,17 @@
      ) -> ou2.Rplug
 @ 
 <<plugin-R-code-sim,echo=F>>=
-tic <- Sys.time()
+binary.file <- "plugin-R-code.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+  tic <- Sys.time()
 simdat.Rplug <- simulate(ou2.Rplug,params=coef(ou2),nsim=1000,states=T)
 toc <- Sys.time()
 etime.Rplug <- toc-tic
+n.Rplug <- dim(simdat.Rplug)[2]
+save(etime.Rplug,n.Rplug,file=binary.file,compress='xz')
+}
 @ 
 Notice how we specify the process model simulator using the \code{rprocess} plug-in \code{discrete.time.sim}.
 The latter function's \code{step.fun} argument is itself a function that simulates one realization of the process for one timestep and one set of parameters.
@@ -145,7 +152,7 @@
 This function must return a rank-3 array, which has the realized values of the state process at the requested times.
 This array must have rownames.
 Here is one implementation of such a simulator.
-<<vectorized-R-code>>=
+<<vectorized-R-code,eval=F>>=
 ou2.Rvect.rprocess <- function (xstart, times, params, ...) {
   nrep <- ncol(xstart)                  # number of realizations
   ntimes <- length(times)               # number of timepoints
@@ -180,12 +187,12 @@
 }
 @
 We can put this into a pomp object that is the same as \code{ou2.Rplug} in every way except in its \code{rprocess} slot by doing
-<<vectorized-R-pomp>>=
+<<vectorized-R-pomp,eval=F>>=
 ou2.Rvect <- pomp(ou2.Rplug,rprocess=ou2.Rvect.rprocess)
 @ 
 
 Let's pick some parameters and simulate some data to see how long it takes this code to run.
-<<theta>>=
+<<theta,eval=F>>=
 theta <- c(
            x1.0=-3, x2.0=4,
            tau=1,
@@ -193,69 +200,29 @@
            sigma.1=3, sigma.2=-0.5, sigma.3=2
            )
 @ 
-<<vectorized-R-code-sim>>=
+<<vectorized-R-code-sim,eval=F>>=
 tic <- Sys.time()
 simdat.Rvect <- simulate(ou2.Rvect,params=theta,states=T,nsim=1000)
 toc <- Sys.time()
 etime.Rvect <- toc-tic
 @ 
-<<echo=F>>=
+<<vectorized-R-code-eval,eval=T>>=
+binary.file <- "vectorized-R-code.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<vectorized-R-code>>
+<<vectorized-R-pomp>>
+<<theta>>
+<<vectorized-R-code-sim>>
 units(etime.Rvect) <- units(etime.Rplug)
+n.Rvect <- dim(simdat.Rvect)[2]
+save(etime.Rvect,n.Rvect,file=binary.file,compress='xz')
+}
 @ 
-Doing \Sexpr{dim(simdat.Rvect)[2]} simulations of \code{ou2.Rvect} took \Sexpr{round(etime.Rvect,2)}~\Sexpr{units(etime.Rvect)}.
-Compared to the \Sexpr{round(etime.Rplug,2)}~\Sexpr{units(etime.Rplug)} it took to run \Sexpr{dim(simdat.Rplug)[2]} simulations of \code{ou2.Rplug}, this is a \Sexpr{round(as.numeric(etime.Rplug)/as.numeric(etime.Rvect))}-fold speed-up.
+Doing \Sexpr{n.Rvect} simulations of \code{ou2.Rvect} took \Sexpr{round(etime.Rvect,2)}~\Sexpr{units(etime.Rvect)}.
+Compared to the \Sexpr{round(etime.Rplug,2)}~\Sexpr{units(etime.Rplug)} it took to run \Sexpr{n.Rplug} simulations of \code{ou2.Rplug}, this is a \Sexpr{round(as.numeric(etime.Rplug)*n.Rvect/as.numeric(etime.Rvect)/n.Rplug)}-fold speed-up.
 
-\subsection{Using \R's byte compiler}
-
-From version {2.13}, \R\ has provided byte-compilation facilities, in the base package \code{compiler}.
-Let's see to what extent we can speed up our codes by byte-compiling the components of our \code{pomp} object.
-<<plugin-byte-code,echo=T>>=
-require(compiler)
-pomp( 
-     ou2.Rplug,
-     rprocess=discrete.time.sim(
-       step.fun=cmpfun(
-         function (x, t, params, ...) {
-           eps <- rnorm(n=2,mean=0,sd=1) # noise terms
-           xnew <- c(
-                     x1=params["alpha.1"]*x["x1"]+params["alpha.3"]*x["x2"]+
-                     params["sigma.1"]*eps[1],
-                     x2=params["alpha.2"]*x["x1"]+params["alpha.4"]*x["x2"]+
-                     params["sigma.2"]*eps[1]+params["sigma.3"]*eps[2]
-                     )
-           names(xnew) <- c("x1","x2")
-           xnew
-         },
-         options=list(optimize=3)
-         )
-       )
-     ) -> ou2.Bplug
-@ 
-<<plugin-byte-code-sim,echo=F>>=
-tic <- Sys.time()
-simdat.Bplug <- simulate(ou2.Bplug,params=coef(ou2),nsim=1000,states=T)
-toc <- Sys.time()
-etime.Bplug <- toc-tic
-@
-Doing these \Sexpr{dim(simdat.Bplug)[2]} simulations of \code{ou2.Bplug} took \Sexpr{round(etime.Bplug,2)}~\Sexpr{units(etime.Bplug)}.
-This is a \Sexpr{round(as.numeric(etime.Rplug)/as.numeric(etime.Bplug),1)}-fold speed-up relative to the plug-in code written in \R.
-
-We can byte-compile the vectorized \R\ code, too, and compare its performance:
-<<vectorized-byte-code>>=
-ou2.Bvect <- pomp(ou2.Rplug,rprocess=cmpfun(ou2.Rvect.rprocess,options=list(optimize=3)))
-@ 
-<<vectorized-byte-code-sim>>=
-tic <- Sys.time()
-simdat.Bvect <- simulate(ou2.Bvect,params=theta,states=T,nsim=1000)
-toc <- Sys.time()
-etime.Bvect <- toc-tic
-@ 
-<<echo=F>>=
-units(etime.Bvect) <- units(etime.Rplug)
-@ 
-This code shows a \Sexpr{round(as.numeric(etime.Rplug)/as.numeric(etime.Bvect))}-fold speed-up relative to the plug-in code written in \R.
-
-
 \subsection{Accelerating the code using C: a plug-in based implementation}
 
 As we've seen, we can usually acheive big accelerations using compiled native code.
@@ -270,7 +237,7 @@
 file.show(file=system.file("include/pomp.h",package="pomp"))
 @ 
 We can put the one-step simulator into the \code{pomp} object and simulate as before by doing
-<<plugin-C-code>>=
+<<plugin-C-code,eval=F>>=
 ou2.Cplug <- pomp(
                   ou2.Rplug,
                   rprocess=discrete.time.sim("ou2_step"),
@@ -282,19 +249,26 @@
                   statenames=c("x1","x2"),
                   obsnames=c("y1","y2")
                   )
-@ 
-<<plugin-C-sim>>=
+<<plugin-C-sim,eval=F>>=
 tic <- Sys.time()
 simdat.Cplug <- simulate(ou2.Cplug,params=theta,states=T,nsim=100000)
 toc <- Sys.time()
 etime.Cplug <- toc-tic
-@ 
-Note that \code{ou2\_step} is written in such a way that we must specify \code{paramnames}, \code{statenames}, and \code{obsnames}.
-These \Sexpr{dim(simdat.Cplug)[2]} simulations of \code{ou2.Cplug} took \Sexpr{round(etime.Cplug,2)}~\Sexpr{units(etime.Cplug)}.
-<<echo=F>>=
+<<plugin-C-sim-eval,eval=T,echo=F>>=
+binary.file <- "plugin-C-code.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<plugin-C-code>>
+<<plugin-C-sim>>
+  n.Cplug <- dim(simdat.Cplug)[2]
 units(etime.Cplug) <- units(etime.Rplug)
-speedup <- as.numeric(etime.Rplug/dim(simdat.Rplug)[2])/as.numeric(etime.Cplug/dim(simdat.Cplug)[2])
+speedup <- as.numeric(etime.Rplug/n.Rplug)/as.numeric(etime.Cplug/n.Cplug)
+save(n.Cplug,etime.Cplug,speedup,file=binary.file,compress='xz')
+}
 @ 
+Note that \code{ou2\_step} is written in such a way that we must specify \code{paramnames}, \code{statenames}, and \code{obsnames}.
+These \Sexpr{n.Cplug} simulations of \code{ou2.Cplug} took \Sexpr{round(etime.Cplug,2)}~\Sexpr{units(etime.Cplug)}.
 This is a \Sexpr{round(speedup)}-fold speed-up relative to \code{ou2.Rplug}.
 
 
@@ -306,7 +280,7 @@
 <<view-ou2-source>>
 @ 
 This function is called in the following \code{rprocess} function.
-Notice that the call to \code{ou2\_adv} uses the \verb+.C+ convention.
+Notice that the call to \code{ou2\_adv} uses the \verb+.C+ interface.
 <<vectorized-C-code>>=
 ou2.Cvect.rprocess <- function (xstart, times, params, ...) {
   nvar <- nrow(xstart)
@@ -334,7 +308,7 @@
                   rprocess=ou2.Cvect.rprocess
                   )
 @ 
-<<vectorized-C-code-sim,echo=T>>=
+<<vectorized-C-code-sim,echo=T,eval=F>>=
 tic <- Sys.time()
 paramnames <- c(
                 "alpha.1","alpha.2","alpha.3","alpha.4",
@@ -345,13 +319,21 @@
 simdat.Cvect <- simulate(ou2.Cvect,params=theta[paramnames],nsim=100000,states=T)
 toc <- Sys.time()
 etime.Cvect <- toc-tic
-@ 
-Note that we've had to rearrange the order of parameters here to ensure that they arrive at the native codes in the right order.
-<<echo=F>>=
+@
+<<vectorized-C-code-eval,echo=F,eval=T>>=
+binary.file <- "vectorized-C-code.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<vectorized-C-code-sim>>
+  n.Cvect <- dim(simdat.Cvect)[2]
 units(etime.Cvect) <- units(etime.Rplug)
-speedup <- as.numeric(etime.Rplug/dim(simdat.Rplug)[2])/as.numeric(etime.Cvect/dim(simdat.Cvect)[2])
+speedup <- as.numeric(etime.Rplug/n.Rplug)/as.numeric(etime.Cvect/n.Cvect)
+save(n.Cvect,etime.Cvect,speedup,file=binary.file,compress='xz')
+}
 @ 
-Doing \Sexpr{dim(simdat.Cvect)[2]} simulations of \code{ou2.Cvect} took \Sexpr{round(etime.Cvect,2)}~\Sexpr{units(etime.Cvect)}, a \Sexpr{round(speedup)}-fold speed-up relative to \code{ou2.Rplug}.
+Note that we've had to rearrange the order of parameters here to ensure that they arrive at the native codes in the right order.
+Doing \Sexpr{n.Cvect} simulations of \code{ou2.Cvect} took \Sexpr{round(etime.Cvect,2)}~\Sexpr{units(etime.Cvect)}, a \Sexpr{round(speedup)}-fold speed-up relative to \code{ou2.Rplug}.
 
 
 \subsection{More on native codes and plug-ins}
@@ -440,7 +422,7 @@
 See the source code to see how this is done.
 
 Let's specify some parameters, simulate, and compute a deterministic trajectory:
-<<sir-sim>>=
+<<sir-sim,eval=F>>=
 params <- c(
             gamma=26,mu=0.02,iota=0.01,
             beta1=400,beta2=480,beta3=320,
@@ -453,6 +435,14 @@
 sir <- simulate(sir,params=c(params,nbasis=3,degree=3,period=1),seed=3493885L)
 sims <- simulate(sir,nsim=10,obs=T)
 traj <- trajectory(sir,hmax=1/52)
+<<sir-sim-eval,echo=F,eval=T>>=
+binary.file <- "sim-sim.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<sir-sim>>
+  save(sir,sims,traj,file=binary.file,compress='xz')
+}
 @ 
 
 \section{Accumulator variables}

Modified: pkg/pomp/inst/doc/advanced_topics_in_pomp.pdf
===================================================================
(Binary files differ)

Added: pkg/pomp/inst/doc/bsmc-ricker-normal-prior.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/bsmc-ricker-normal-prior.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/complex-sir-def.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/complex-sir-def.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/gompertz-pfilter-guess.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/gompertz-pfilter-guess.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Modified: pkg/pomp/inst/doc/intro_to_pomp.Rnw
===================================================================
--- pkg/pomp/inst/doc/intro_to_pomp.Rnw	2012-08-08 13:54:57 UTC (rev 764)
+++ pkg/pomp/inst/doc/intro_to_pomp.Rnw	2012-08-08 15:22:18 UTC (rev 765)
@@ -388,8 +388,14 @@
 loglik.guess <- logLik(pf)
 @ 
 <<gompertz-pfilter-guess-eval,echo=F>>=
+binary.file <- "gompertz-pfilter-guess.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
 set.seed(457645443L)
 <<gompertz-pfilter-guess>>
+save(theta.true,theta.guess,loglik.guess,file=binary.file,compress='xz')
+}  
 @ 
 
 \begin{textbox}
@@ -891,10 +897,18 @@
 Each of these functions can be applied to the \code{ricker}'s data or to simulated data sets.
 A call to \pkg{pomp}'s function \code{probe} results in the application of these functions to the data, their application to each of some large number, \code{nsim}, of simulated data sets, and finally to a comparison of the two.
 To see this, we'll apply probe to the Ricker model at the true parameters and at a wild guess.
-<<first-probe>>=
+<<first-probe,eval=F,echo=T>>=
 pb.truth <- probe(ricker,probes=plist,nsim=1000,seed=1066L)
 guess <- c(r=20,sigma=1,phi=20,N.0=7,e.0=0)
 pb.guess <- probe(ricker,params=guess,probes=plist,nsim=1000,seed=1066L)
+<<first-probe-eval,eval=T,echo=F>>=
+binary.file <- "ricker-first-probe.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<first-probe>>
+  save(pb.truth,pb.guess,guess,file=binary.file,compress='xz')
+}
 @ 
 Results summaries and diagnostic plots showing the model-data agreement and correlations among the probes can be obtained by 
 <<first-probe-plot,eval=F>>=
@@ -909,17 +923,23 @@
 
 \begin{figure}
 <<ricker-probe-plot,echo=F,fig=T,png=T,results=hide>>=
+binary.file <- "ricker-probe.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
   pb <- probe(ricker,
               probes=list(
                 probe.marginal("y",ref=obs(ricker),transform=sqrt),
                 probe.acf("y",lags=c(0,1,3),transform=sqrt),
                 mean=probe.mean("y",transform=sqrt)
-                       ),
+                ),
               transform=TRUE,
               nsim=1000,
               seed=1066L
               )
-  plot(pb)
+  save(pb,file=binary.file,compress='xz')
+}
+plot(pb)
 @ 
 \caption{
   Results of \code{plot} on a \code{probed.pomp}-class object.
@@ -994,7 +1014,7 @@
 \item the MLE from \code{mif}, and
 \item the maximum synthetic likelihood estimate from \code{probe.match}.
 \end{inparaenum}
-<<>>=
+<<ricker-comparison,eval=F,echo=T>>=
 pf.truth <- pfilter(ricker,Np=1000,max.fail=50,seed=1066L)
 pf.guess <- pfilter(ricker,params=guess,Np=1000,max.fail=50,seed=1066L)
 pf.mf <- pfilter(mf,Np=1000,seed=1066L)
@@ -1015,7 +1035,16 @@
                summary(pm)$synth.loglik
                )
              )
-
+<<ricker-comparison-eval,echo=F,eval=T>>=
+binary.file <- "ricker-comparison.rda"
+if (file.exists(binary.file)) {
+  load(binary.file) 
+} else {
+<<ricker-comparison>>
+  save(res,file=binary.file,compress='xz')
+}
+@ 
+<<ricker-comparison-show>>=
 print(res,digits=3)
 @ 
 
@@ -1030,7 +1059,7 @@
 
 As a simple example we can use \code{nlf} to estimate the parameters \code{K} and \code{r} of the Gompertz model.  
 An example of a minimal call, accepting the defaults for all optional arguments, is 
-<<eval=F>>=
+<<first-nlf,eval=F>>=
 data(gompertz)
 out <- nlf(
            gompertz,
@@ -1080,7 +1109,7 @@
 }
 fits <- t(sapply(out,function(x)c(x$params[c("r","K")],value=x$value)))
 @ 
-<<echo=F,eval=T,results=hide>>=
+<<nlf-fits-eval,echo=F,eval=T,results=hide>>=
 binary.file <- "nlf-fits.rda"
 if (file.exists(binary.file)) {
   load(binary.file)
@@ -1431,7 +1460,7 @@
 \end{figure}
 
 To repeat the procedure with log-normal priors on $r$ and $\sigma$, one might do the following.
-<<bsmc-example-normal-prior>>=
+<<bsmc-example-normal-prior,eval=F,echo=T>>=
 set.seed(90348704L)
 Np <- 10000
 prior2 <- parmat(coef(ricker),nrep=Np)
@@ -1441,10 +1470,18 @@
 prior2["sigma",] <- rlnorm(n=Np,meanlog=log(0.5),sdlog=5)
 fit2 <- bsmc(ricker,params=prior2,transform=TRUE,
             est=c("r","sigma"),smooth=0.2)
+<<bsmc-example-normal-prior-eval,eval=T,echo=F>>=
+binary.file <- "bsmc-ricker-normal-prior.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<bsmc-example-normal-prior>>
+  save(fit2,file=binary.file,compress="xz")
+}
+<<bsmc-example-normal-prior-show,echo=T,eval=T>>=
 signif(coef(fit2),digits=2)
 @ 
 
-
 \clearpage
 \section{Particle Markov chain Monte Carlo: \code{pmcmc}}
 
@@ -1610,7 +1647,7 @@
 We can enforce this constraint by customizing the parameterization of our initial conditions.
 We do this in by specializing a custom \code{initializer} in the call to \code{pomp} that constructs the \code{pomp} object.
 Let's construct it now and fill it with simulated data.
-<<sir-pomp-def>>=
+<<sir-pomp-def,eval=F,echo=T>>=
 simulate(
          pomp(
               data=data.frame(
@@ -1643,7 +1680,14 @@
            ),
          seed=677573454L
          ) -> sir
-@ 
+<<sir-pomp-def-eval,eval=T,echo=F>>=
+binary.file <- "sir-pomp-def.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<sir-pomp-def>>
+  save(sir,file=binary.file,compress='xz')
+}
 <<sir-pomp-def-with-skel,eval=F,echo=F>>=
 sir <- pomp(
             sir,
@@ -1726,7 +1770,7 @@
 \citet{Breto2011} develop the theory of infinitesimally overdispersed processes.
 
 Let's modify the process-model simulator to incorporate these three complexities.
-<<complex-sir-def>>=
+<<complex-sir-def,echo=T,eval=F>>=
 complex.sir.proc.sim <- function (x, t, params, delta.t, covars, ...) {
   ## unpack the parameters
   N <- params["N"]                 # population size
@@ -1782,6 +1826,14 @@
            ),
          seed=8274355L
          ) -> complex.sir
+<<complex-sir-def-eval,echo=F,eval=T>>=
+binary.file <- "complex-sir-def.rda"
+if (file.exists(binary.file)) {
+  load(binary.file)
+} else {
+<<complex-sir-def>>
+  save(complex.sir,file=binary.file,compress='xz')
+}
 @ 
 Note that the seasonal basis functions are passed to \code{complex.sir.proc.sim} via the \code{covars} argument.
 Whenever \code{complex.sir.proc.sim} is called, this argument will contain values of the covariates obtained from the look-up table.

Modified: pkg/pomp/inst/doc/intro_to_pomp.pdf
===================================================================
(Binary files differ)

Added: pkg/pomp/inst/doc/plugin-C-code.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/plugin-C-code.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/plugin-R-code.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/plugin-R-code.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/ricker-comparison.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/ricker-comparison.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/ricker-first-probe.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/ricker-first-probe.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/ricker-probe.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/ricker-probe.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/sim-sim.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/sim-sim.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/sir-pomp-def.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/sir-pomp-def.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/vectorized-C-code.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/vectorized-C-code.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream

Added: pkg/pomp/inst/doc/vectorized-R-code.rda
===================================================================
(Binary files differ)


Property changes on: pkg/pomp/inst/doc/vectorized-R-code.rda
___________________________________________________________________
Added: svn:mime-type
   + application/octet-stream



More information about the pomp-commits mailing list