[Pomp-commits] r661 - pkg/inst/doc
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Sun Apr 15 18:07:03 CEST 2012
Author: kingaa
Date: 2012-04-15 18:07:02 +0200 (Sun, 15 Apr 2012)
New Revision: 661
Modified:
pkg/inst/doc/advanced_topics_in_pomp.Rnw
pkg/inst/doc/advanced_topics_in_pomp.pdf
pkg/inst/doc/intro_to_pomp.Rnw
pkg/inst/doc/intro_to_pomp.pdf
Log:
- update vignettes
Modified: pkg/inst/doc/advanced_topics_in_pomp.Rnw
===================================================================
--- pkg/inst/doc/advanced_topics_in_pomp.Rnw 2012-04-15 15:43:19 UTC (rev 660)
+++ pkg/inst/doc/advanced_topics_in_pomp.Rnw 2012-04-15 16:07:02 UTC (rev 661)
@@ -388,7 +388,7 @@
statenames=c("S","I","R","cases","W"),
## the order of the parameters assumed in the native routines:
paramnames=c(
- "gamma","mu","iota","logbeta1","beta.sd",
+ "gamma","mu","iota","beta1","beta.sd",
"pop","rho","nbasis","degree","period"
),
## designate 'cases' as an accumulator variable
@@ -438,11 +438,11 @@
<<sir-sim>>=
params <- c(
gamma=26,mu=0.02,iota=0.01,
- logbeta1=log(1200),logbeta2=log(1800),logbeta3=log(600),
+ beta1=400,beta2=480,beta3=320,
beta.sd=1e-3,
pop=2.1e6,
rho=0.6,
- S.0=26/1200,I.0=0.001,R.0=1-0.001-26/1200
+ S.0=26/400,I.0=0.001,R.0=1-0.001-26/400
)
sir <- simulate(sir,params=c(params,nbasis=3,degree=3,period=1),seed=3493885L)
Modified: pkg/inst/doc/advanced_topics_in_pomp.pdf
===================================================================
(Binary files differ)
Modified: pkg/inst/doc/intro_to_pomp.Rnw
===================================================================
--- pkg/inst/doc/intro_to_pomp.Rnw 2012-04-15 15:43:19 UTC (rev 660)
+++ pkg/inst/doc/intro_to_pomp.Rnw 2012-04-15 16:07:02 UTC (rev 661)
@@ -1705,7 +1705,7 @@
B-splines are useful in this regard and \pkg{pomp} provides some simple facilities for using these.
If $s_{i}(t)$, $i=1,\dots,k$ is a periodic B-spline basis, as in Fig.~\ref{fig:seas-basis-plot}, then we can for example define
\begin{equation*}
- \log\beta(t)=\sum_{i}\!b_{i}\,s_{i}(t)
+ \beta(t)=\sum_{i}\!b_{i}\,s_{i}(t)
\end{equation*}
and, by varying the coefficients $b_{i}$, we can obtain a wide variety of shapes for $\beta(t)$.
In \pkg{pomp}, we can define a set of periodic B-spline basis functions by doing:
Modified: pkg/inst/doc/intro_to_pomp.pdf
===================================================================
(Binary files differ)
More information about the pomp-commits
mailing list