[Nmf-user] CFP: 2012 IEEE WCCI Special Session on Nonnegative Matrix factorization paradigm for unsupervised learning
Nistor Grozavu
Nistor.Grozavu at lipn.univ-paris13.fr
Wed Nov 23 11:53:41 CET 2011
Dear Colleague,
I would like to cordially invite you to submit a paper for the special
session on "Nonnegative Matrix factorization paradigm for unsupervised
learning
<http://www-lipn.univ-paris13.fr/%7Egrozavu/IJCNN/default.html>"
(http://www-lipn.univ-paris13.fr/~grozavu/IJCNN/default.html)
organized within the 2012 IEEE World Congress on Computational
Intelligence ( IJCNN) which will be held on June 10-15, 2012, in
Brisbane, Australia.
*Paper submission deadline : *Dec 19, 2011
For the paper submission guidlines please refer to the WCCI website
<http://www.ieee-wcci2012.org/ieee-wcci2012/>.
Introduction to the Special Session
<http://www-lipn.univ-paris13.fr/%7Egrozavu/IJCNN/default.html>:
This special session will cover original and pioneering contributions,
theory as well as applications on nonnegative matrix factorization (NMF)
paradigm for unsupervised learning, and aim at an inspiring discussion
on the recent progress and the future development.
A fundamental problem in many machine learning tasks is to find a
suitable representation of the data. A useful representation typically
makes latent structure in the data explicit, and often reduces the
dimensionality of the data so that further computational methods can be
applied.
NMF is a commonly used approach to understanding the latent structure of
the observed matrix for various applications. NMF methods have attracted
increasing attention in recent years because of their mathematical
elegance and encouraging empirical results.
There are many forms of NMF. Previous work has shown that by respecting
the nonnegativity, the factorization results will be easier to interpret
while being comparable to, or better than, other techniques like SVD on
effectiveness NMF has been successfully applied to a variety of
applications, including face detection and recognition, audio and speech
processing, text mining, biomedical image analysis, bioinformatics, and
so on.
In this special session, the main methods of matrix factorization
paradigm for unsupervised learning will be presented. Also, the
effectiveness of these methods will be discussed considering the
concepts of diversity and selection of these approaches.
Topics of interest include but not limited to:
- Convex-NMF
- Hard clustering and NMF
- Kernel-NMF
- NMF for Large-Scale Data
- Maximum margin matrix factorization (MMMF)
- NMF with Sparseness Constraints
- Orthogonal symmetric NMF
- Probabilistic NMF
- Relaxed NMF
- Semi-NMF
- Tri-NMF
- Weighted NMF
- Weighted NMTri-Factorization
- Dimensionality reduction via matrix factorization
Organizers:
*Younès BENNANI, Full Professor - Paris 13 University
**Nistor GROZAVU, Associate Professor - Paris 13 University
**Mohamed NADIF, Full Professor - Paris Descartes University
**Nicoleta ROGOVSCHI, Associate Professor - Paris Descartes University*
Best regards,
Nistor Grozavu
PhD, Computer Science Laboratory of the Paris 13 University (LIPN)
http://www-lipn.univ-paris13.fr/~grozavu/
tel: +33 (0)626901790
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.r-forge.r-project.org/pipermail/nmf-user/attachments/20111123/6374603e/attachment.htm>
More information about the Nmf-user
mailing list