[Mattice-commits] r239 - in pkg: R inst

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Feb 9 18:55:52 CET 2010


Author: andrew_hipp
Date: 2010-02-09 18:55:52 +0100 (Tue, 09 Feb 2010)
New Revision: 239

Modified:
   pkg/R/batchHansen.R
   pkg/R/multiModel.R
   pkg/R/ouSim.hansenBatch.R
   pkg/R/ouSim.ouchtree.R
   pkg/R/ouSim.phylo.R
   pkg/R/summarizingAnalyses.R
   pkg/inst/VERSIONS
Log:
changed alpha to sqrt.alpha throughout for compatibility with new ouch

Modified: pkg/R/batchHansen.R
===================================================================
--- pkg/R/batchHansen.R	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/R/batchHansen.R	2010-02-09 17:55:52 UTC (rev 239)
@@ -48,7 +48,7 @@
     if(stopFlag) stop("Correct discrepancies between trees and data and try again!")
     }
   if(!identical(di, NULL)) dir.create(di)
-  if(class(try(alpha, silent = TRUE)) == 'try-error') alpha = 1
+  if(class(try(sqrt.alpha, silent = TRUE)) == 'try-error') sqrt.alpha = 1
   if(class(try(sigma, silent = TRUE)) == 'try-error') sigma = 1
   ar = regimeVectors(ouchTrees, cladeMembersList, maxNodes)
   hansenBatch <- list(length(ouchTrees))
@@ -77,7 +77,7 @@
     ## send it off to batchHansen and just stick the results in hansenBatch... this won't work as the number of regimes gets large, 
     ##   so there should be some option here to just hang onto the coefficients for each run (i.e., hang onto 'coef(hansen(...))' rather than 'hansen(...)')
     ##   there could also be an option to save the entire object as a series of files in addition to hanging onto 
-    hb <- batchHansen(tree, dataIn, ar$regList[[i]], regimeTitles, brown, fP, alpha, sigma, ...)
+    hb <- batchHansen(tree, dataIn, ar$regList[[i]], regimeTitles, brown, fP, sqrt.alpha, sigma, ...)
     hansenBatch[[i]] <- hb$treeData
     thetas[[i]] <- hb$thetas
     message(paste("Tree",i,"of",length(ouchTrees),"complete", "\n-----------------------------"))
@@ -93,14 +93,14 @@
 #  "regimesList" = list of regime-paintings as output from regimeVectors
 #  "scalingFactor" = factor to multiply against (times / max(times)) -- choose based on trial analyses
 # Value: a matrix with nrow = regimes (+ 1 if brownian model is included) and columns for u, d.f., all estimated parameters, LRvsBM, AIC, and AIC weight
-function(tree, data, regimesList, regimeTitles, brown, filePrefix = NULL, alpha, sigma, ...) {
+function(tree, data, regimesList, regimeTitles, brown, filePrefix = NULL, sqrt.alpha, sigma, ...) {
   n <- tree at nterm
-  ## set up a matrix that returns lnL, K, sigmasq, theta0, and alpha for every model
+  ## set up a matrix that returns lnL, K, sigmasq, theta0, and sqrt.alpha for every model
   ## thetas go into a models-by-branch matrix
   hansenOptima <- list(length(regimeTitles))
-  variables <- c("loglik", "dof", "sigma.squared", "theta / alpha") # only display variables... set the selecting variables in the next two lines
+  variables <- c("loglik", "dof", "sigma.squared", "theta / sqrt.alpha") # only display variables... set the selecting variables in the next two lines
   brVars <- c("loglik", "dof", "sigma.squared", "theta")
-  haVars <- c("loglik", "dof", "sigma.squared", "alpha")
+  haVars <- c("loglik", "dof", "sigma.squared", "sqrt.alpha")
   if(brown) thetaModels <- regimeTitles[1: (length(regimeTitles) - 1)]
   else thetaModels <- regimeTitles
   thetas <- matrix(NA, 
@@ -120,8 +120,8 @@
       }
     else {
       message(paste("Running regime",i))
-      ## at this point, the user has to give an initial alpha and sigma for hansen to search on... this should be relaxed
-      ha = hansen(data = data, tree = tree, regimes = regimesList[[i]], alpha = alpha, sigma = sigma, ...)
+      ## at this point, the user has to give an initial sqrt.alpha and sigma for hansen to search on... this should be relaxed
+      ha = hansen(data = data, tree = tree, regimes = regimesList[[i]], sqrt.alpha = sqrt.alpha, sigma = sigma, ...)
       treeData[i, ] <- unlist(summary(ha)[haVars])
       thetas[i, ] <- ha at theta$data[ha at regimes[[1]]]
       if(!identical(filePrefix, NULL)) save(ha, file = paste(filePrefix, 'r', i, '.Rdata', sep = ""))

Modified: pkg/R/multiModel.R
===================================================================
--- pkg/R/multiModel.R	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/R/multiModel.R	2010-02-09 17:55:52 UTC (rev 239)
@@ -2,11 +2,11 @@
 # test the support for alternative models on simple and partitioned trees
 # currently only works on one tree; eventually should be modified so it runs on a set of trees, conditioned on those trees 
 #   that have the node of interest and returning percent of trees possessing that node as an additional value
-  paramHeader <- c('loglik', 'dof', 'sigma.squared', 'alpha', 'theta', 'optimum', 'optimum.uptree', 'optimum.downtree')
+  paramHeader <- c('loglik', 'dof', 'sigma.squared', 'sqrt.alpha', 'theta', 'optimum', 'optimum.uptree', 'optimum.downtree')
   paramsAll <- c('loglik', 'dof', 'sigma.squared')
   paramSets <- list(brown = c(paramsAll, 'theta'), 
-                  ou1 = c(paramsAll, 'alpha', 'optimum'), 
-                  ou2 = c(paramsAll, 'alpha', 'optimum.uptree', 'optimum.downtree')
+                  ou1 = c(paramsAll, 'sqrt.alpha', 'optimum'), 
+                  ou2 = c(paramsAll, 'sqrt.alpha', 'optimum.uptree', 'optimum.downtree')
                   )
   modelsAll = c('whole.ou2', 'whole.ou1', 'whole.brown', 'part.ou.uptree', 'part.ou.downtree', 'part.ou.summed', 'part.brown.uptree', 'part.brown.downtree', 'part.brown.summed')
   pSum <- c('loglik', 'dof') # parameters to sum for evaluating partitioned trees
@@ -47,14 +47,14 @@
   if(model == "ou1") analysis <- hansen(dat, 
   					phy, 
                                         regimes = structure(rep(phy at root, phy at nnodes), names = phy at nodes, levels = 1, class = 'factor'),
-                                        alpha = 1, 
+                                        sqrt.alpha = 1, 
                                         sigma = 1
                                         )
   if(model == "ou2") {
     regime <- paintBranches(list(node), phy)
     uptreeNum <- as.character(phy at root)
     downtreeNum <- as.character(unique(regime))[unique(regime) != phy at root]
-    analysis <- hansen(dat, phy, regime, alpha = 1, sigma = 1)
+    analysis <- hansen(dat, phy, regime, sqrt.alpha = 1, sigma = 1)
     }
   params <- unlist(summary(analysis)[parameterVector])[paramHeader]
   names(params) <- paramHeader
@@ -79,7 +79,7 @@
                                                             regimes = structure(rep(1, phyList[[i]]@nnodes), 
                                                                                 names = phyList[[i]]@nodes, 
                                                                                 levels = 1, class = 'factor'),
-                                                            sigma = 1, alpha = 1)
+                                                            sigma = 1, sqrt.alpha = 1)
     } 
   names(analysis) <- treeNames
   params <- matrix(NA, nrow = length(c(treeNames, 'summed')), ncol = length(paramHeader), dimnames = list(c(treeNames, 'summed'), paramHeader))

Modified: pkg/R/ouSim.hansenBatch.R
===================================================================
--- pkg/R/ouSim.hansenBatch.R	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/R/ouSim.hansenBatch.R	2010-02-09 17:55:52 UTC (rev 239)
@@ -1,9 +1,9 @@
 ouSim.hansenSummary <- function(object, tree, treeNum = 1, rootState = NULL, ...) {
-## runs ouSim.ouchtree for a hansenBatch or hansenSummary object, using the model-averaged alpha, sigma.squared, and theta vector from one tree
+## runs ouSim.ouchtree for a hansenBatch or hansenSummary object, using the model-averaged sqrt.alpha, sigma.squared, and theta vector from one tree
   analysis <- object
   # if(class(analysis) == "hansenBatch") analysis <- summary(analysis)
   if(identical(rootState, NULL)) rootState <- analysis$thetaMatrix[treeNum, ][tree at root] # rootstate taken to be the optimum at the root
-  outdata <- ouSim(tree, rootState, alpha = analysis$modelAvgAlpha, variance = analysis$modelAvgSigmaSq, theta = analysis$thetaMatrix[treeNum, ], ...)
+  outdata <- ouSim(tree, rootState, sqrt.alpha = analysis$modelAvgAlpha, variance = analysis$modelAvgSigmaSq, theta = analysis$thetaMatrix[treeNum, ], ...)
   class(outdata) <- "ouSim"
   return(outdata)
 }
@@ -14,13 +14,13 @@
   analysis <- object
   su <- summary(analysis)
   if(length(analysis at regimes) > 1) warning("Theta is based on analysis at regimes[[1]]")
-  if(dim(su$alpha)[1] != 1) stop("This is a one-character simulation; analysis appears to be based on > 1 character")
-  alpha <- as.vector(su$alpha)
+  if(dim(su$sqrt.alpha)[1] != 1) stop("This is a one-character simulation; analysis appears to be based on > 1 character")
+  sqrt.alpha <- as.vector(su$sqrt.alpha)
   theta <- su$optima[[1]][analysis at regimes[[1]]]
   rootState <- theta[analysis at root] # rootstate taken to be the optimum at the root
   variance <- as.vector(su$sigma.squared)
   tree <- ouchtree(analysis at nodes, analysis at ancestors, analysis at times) 
-  outdata <- ouSim.ouchtree(tree, rootState, alpha, variance, theta, ...)
+  outdata <- ouSim.ouchtree(tree, rootState, sqrt.alpha, variance, theta, ...)
   outdata$colors <- analysis at regimes[[1]]
   class(outdata) <- "ouSim"
   return(outdata)
@@ -30,13 +30,13 @@
   analysis <- object
   su <- summary(analysis)
   if(length(analysis at regimes) > 1) warning("Theta is based on analysis at regimes[[1]]")
-  if(dim(su$alpha)[1] != 1) stop("This is a one-character simulation; analysis appears to be based on > 1 character")
-  alpha <- 0
+  if(dim(su$sqrt.alpha)[1] != 1) stop("This is a one-character simulation; analysis appears to be based on > 1 character")
+  sqrt.alpha <- 0
   theta <- 0
   rootState <- su$theta[[1]]
   variance <- as.vector(su$sigma.squared)
   tree <- ouchtree(analysis at nodes, analysis at ancestors, analysis at times) 
-  outdata <- ouSim.ouchtree(tree, rootState, alpha, variance, theta, ...)
+  outdata <- ouSim.ouchtree(tree, rootState, sqrt.alpha, variance, theta, ...)
   outdata$colors <- analysis at regimes[[1]]
   class(outdata) <- "ouSim"
   return(outdata)

Modified: pkg/R/ouSim.ouchtree.R
===================================================================
--- pkg/R/ouSim.ouchtree.R	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/R/ouSim.ouchtree.R	2010-02-09 17:55:52 UTC (rev 239)
@@ -1,14 +1,14 @@
-ouSim.ouchtree <- function(object, rootState = 0, alpha = 0, variance = 1, theta = rootState, steps = 1000, ...) {
+ouSim.ouchtree <- function(object, rootState = 0, sqrt.alpha = 0, variance = 1, theta = rootState, steps = 1000, ...) {
 ## function to plot a simulated dataset under brownian motion or Ornstein-Uhlenbeck (OU) model
 ## Arguments:
 ##   object is an ouch-style (S4) tree
-##   alpha and theta are either single values or vectors of length (length(branchList))
+##   sqrt.alpha and theta are either single values or vectors of length (length(branchList))
 tree <- object
-message(paste("running sim with root =", rootState, ", alpha =", mean(alpha), ", var =", variance, "theta =", mean(theta)))
+message(paste("running sim with root =", rootState, ", sqrt.alpha =", mean(sqrt.alpha), ", var =", variance, "theta =", mean(theta)))
 
 	## embedded function---------------------
 	## could be released to the wild, but more arguments would need to be passed around
-	preorderOU <- function(branchList, tree, startNode, startState, alpha, theta) {
+	preorderOU <- function(branchList, tree, startNode, startState, sqrt.alpha, theta) {
 	  ## Recursive function to generate the data under a Brownian motion or OU model
 	  ## modified for ouchtree (s4) Dec 08
 	  ## branch times back from each tip are in tree at epochs, indexed by tip number
@@ -21,24 +21,24 @@
 	  else {
 	    for (brStep in 1:length(workingBranch)) {
 	      workingBranch[brStep] <- 
-	        startState + workingBranch[brStep] + alpha[startBranch] / steps * (theta[startBranch] - startState) # denom was mult'd by steps... should be? 
+	        startState + workingBranch[brStep] + sqrt.alpha[startBranch] / steps * (theta[startBranch] - startState) # denom was mult'd by steps... should be? 
 	      startState <- workingBranch[brStep] 
 	      }
 	    branchList[[startBranch]] <- workingBranch
 	    endState <- branchList[[startBranch]][length(branchList[[startBranch]])]
 	    }	  
 	  if(!identical(as.integer(daughterBranches), integer(0))) {
-	    for(i in daughterBranches) branchList <- preorderOU(branchList, tree, i, endState, alpha, theta) } 
+	    for(i in daughterBranches) branchList <- preorderOU(branchList, tree, i, endState, sqrt.alpha, theta) } 
 	  return(branchList) 
 	}  
 	## --------------------------------------
 
   ## 1. initialize
-  if(length(alpha) == 1) alpha <- rep(alpha, tree at nnodes)
+  if(length(sqrt.alpha) == 1) sqrt.alpha <- rep(sqrt.alpha, tree at nnodes)
   if(length(theta) == 1) theta <- rep(theta, tree at nnodes)
   brLengths <- c(0, unlist(lapply(2:tree at nnodes, branchLength, tree = tree))) # assumes first node is root; this should be relaxed
   names(brLengths) <- tree at nodes # branches are indexed by end node
-  names(alpha) <- tree at nodes
+  names(sqrt.alpha) <- tree at nodes
   names(theta) <- tree at nodes
 
   ## 2. The following creates a list of random draws from the normal distribution, with standard deviation scaled by total 
@@ -60,10 +60,10 @@
 
   ## 3. traverse
   for(i in which(tree at ancestors == tree at root)) { ## calls preorderOU for each descendent from the root.
-    branchList <- preorderOU(branchList, tree, tree at nodes[i], rootState, alpha, theta) 
+    branchList <- preorderOU(branchList, tree, tree at nodes[i], rootState, sqrt.alpha, theta) 
     }
 		
-  value <- list(branchList = branchList, timesList = timesList, steps = steps, parameters = list(rootState = rootState, alpha = alpha, variance = variance, theta = theta))
+  value <- list(branchList = branchList, timesList = timesList, steps = steps, parameters = list(rootState = rootState, sqrt.alpha = sqrt.alpha, variance = variance, theta = theta))
   class(value) <- "ouSim"
   return(value)
 }

Modified: pkg/R/ouSim.phylo.R
===================================================================
--- pkg/R/ouSim.phylo.R	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/R/ouSim.phylo.R	2010-02-09 17:55:52 UTC (rev 239)
@@ -1,19 +1,19 @@
-ouSim.phylo <- function(object, rootState = 0, shiftBranches = NULL, shiftStates = NULL, alpha = 0, variance = 1, theta = rootState, model = "OU", branchMeans = NULL, steps = 1000, ...) {
+ouSim.phylo <- function(object, rootState = 0, shiftBranches = NULL, shiftStates = NULL, sqrt.alpha = 0, variance = 1, theta = rootState, model = "OU", branchMeans = NULL, steps = 1000, ...) {
 ## function to plot a simulated dataset under brownian motion or Ornstein-Uhlenbeck (OU) model
 ## Arguments:
 ##   phy is an ape-style tree
-##   alpha and theta are either single values or vectors of length (length(branchList))
+##   sqrt.alpha and theta are either single values or vectors of length (length(branchList))
 ##   shiftBranches is a vector indicating any branches at which an OU or brownian motion model has a determined shift in ancestral state
 ##   shiftStates is a vector of length = length(shiftBranches) indicaing the ancestral states for the determined break points
 ## Models:
 ##  "OU" is a brownian motion or OU model 
 ##  "meanVar" is a model in which the only phylogenetic effect is the mean and variance for a given branch
 ## Andrew Hipp (ahipp at mortonarb.org), January 2008 
-## July 2008: modified to accomodate a vector of alpha and theta corresponding to branches
+## July 2008: modified to accomodate a vector of sqrt.alpha and theta corresponding to branches
 ## Dec 2008: This function I'm leaving as is for the time being and just letting the phylo method be as raw as always.
 ##           New developments will be in the ouchtree, brown, hansen, and hansenBatch methods
 phy <- object
-preorderOU <- function(branchList, phy, startNode, startState, alpha, theta) {
+preorderOU <- function(branchList, phy, startNode, startState, sqrt.alpha, theta) {
 ## Recursive function to generate the data under a Brownian motion or OU model (not needed in the Platt model)
   startBranch = which(phy$edge[,2] == startNode)
   if(!identical(shiftStates, NULL)) {
@@ -21,16 +21,16 @@
   message(paste('Working on branch',startBranch,'with starting state',startState))
   branchList[[startBranch]][1] <- startState
   for (i in 2:length(branchList[[startBranch]])) {
-    branchList[[startBranch]][i] <- branchList[[startBranch]][i - 1] + branchList[[startBranch]][i] + alpha[startBranch] / steps * (theta[startBranch] - branchList[[startBranch]][i - 1]) }
+    branchList[[startBranch]][i] <- branchList[[startBranch]][i - 1] + branchList[[startBranch]][i] + sqrt.alpha[startBranch] / steps * (theta[startBranch] - branchList[[startBranch]][i - 1]) }
   endState = branchList[[startBranch]][length(branchList[[startBranch]])]
   daughterBranches <- phy$edge[which(phy$edge[, 1] == startNode), 2]
   if(!identical(as.integer(daughterBranches), integer(0))) {
-    for(i in daughterBranches) branchList <- preorderOU(branchList, phy, i, endState, alpha, theta) }
+    for(i in daughterBranches) branchList <- preorderOU(branchList, phy, i, endState, sqrt.alpha, theta) }
   return(branchList) }  
 
 ## 1. initialize
 
-if(length(alpha) == 1) alpha <- rep(alpha, length(phy$edge.length))
+if(length(sqrt.alpha) == 1) sqrt.alpha <- rep(sqrt.alpha, length(phy$edge.length))
 if(length(theta) == 1) theta <- rep(theta, length(phy$edge.length))
 ## The following creates a list of random draws from the normal distribution, with standard deviation scaled by total tree length and the number of draws for each branch equal to the number of steps in that branch. If there is a separate variance for each branch, I assume the variance is expressed in tree-length units, not branch-length units, so the scaling is the same for all branches (viz., sd = sqrt(variance / steps))
 if(model == "OU") {
@@ -58,10 +58,10 @@
 ## 3. traverse
 if(model == "OU") {
 	for(i in which(phy$edge[, 1] == rootNode)) {
-	  branchList <- preorderOU(branchList, phy, phy$edge[i,2], rootState, alpha, theta) }}
+	  branchList <- preorderOU(branchList, phy, phy$edge[i,2], rootState, sqrt.alpha, theta) }}
 if(model == "meanVar") branchList <- branchList
 
-value <- (list(branchList = branchList, timesList = timesList, steps = steps, parameters = list(rootState = rootState, alpha = alpha, variance = variance, theta = theta))) 
+value <- (list(branchList = branchList, timesList = timesList, steps = steps, parameters = list(rootState = rootState, sqrt.alpha = sqrt.alpha, variance = variance, theta = theta))) 
 class(value) <- "ouSim"
 return(value)
 }
\ No newline at end of file

Modified: pkg/R/summarizingAnalyses.R
===================================================================
--- pkg/R/summarizingAnalyses.R	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/R/summarizingAnalyses.R	2010-02-09 17:55:52 UTC (rev 239)
@@ -12,7 +12,7 @@
   nnodes <- length(nodeSums) # number of nodes being studied
   nodes <- dimnames(hansenBatch$regMatrix$overall)[[2]] # grab the overall regMatrix, which includes all possible nodes
   sigmaSqVector <- numeric(ntrees) # vector to capture model-averaged sigma^2 for each tree
-  alphaVector <- numeric(ntrees) # vector to capture model-averaged alpha for each tree
+  sqrt.alphaVector <- numeric(ntrees) # vector to capture model-averaged sqrt.alpha for each tree
   modelsMatrix <- vector('list', ntrees) # list of matrices, indexed by tree, holding the weight for each model
   matrixRows <- c('AIC.weight', 'AICc.weight', 'BIC.weight') # rows in the matrix
   nodeWeightsSummed <- matrix(0, nrow = length(matrixRows), ncol = nnodes, dimnames = list(matrixRows, nodes)) # holds node weights summed
@@ -32,9 +32,9 @@
 	  }
     sigmaSqVector[tree] <- weighted.mean(hansenBatch$hansens[[tree]][, 'sigma.squared'], bic, na.rm = TRUE)
     if(hansenBatch$brown) bicOU <- bic[1: (length(bic) - 1)]
-    alphaVector[tree] <- ifelse(hansenBatch$brown, 
-                                weighted.mean(hansenBatch$hansens[[tree]][1:(nmodels - 1), 'theta / alpha'], bicOU, na.rm = TRUE),
-                                weighted.mean(hansenBatch$hansens[[tree]][ , 'theta / alpha'], bic, na.rm = TRUE) 
+    sqrt.alphaVector[tree] <- ifelse(hansenBatch$brown, 
+                                weighted.mean(hansenBatch$hansens[[tree]][1:(nmodels - 1), 'theta / sqrt.alpha'], bicOU, na.rm = TRUE),
+                                weighted.mean(hansenBatch$hansens[[tree]][ , 'theta / sqrt.alpha'], bic, na.rm = TRUE) 
                                 )
     if(hansenBatch$brown) w <- bicOU else w <- bic
     thetaMatrix[tree, ] <- apply(hansenBatch$thetas[[tree]], 2, 
@@ -51,7 +51,7 @@
   
   # sum over number of parameters
   # create a vector of sums that tells us how many categories there are for each model: dof = sum(nodes) + 1 [because a node indicates a change in 
-  #   regime, thus the total number of thetas = nodes + 1] + alpha + sigma = sum(nodes) + 3; for Brownian motion model, dof = 2
+  #   regime, thus the total number of thetas = nodes + 1] + sqrt.alpha + sigma = sum(nodes) + 3; for Brownian motion model, dof = 2
   
   #nodeSums <- apply(hansenBatch$regMatrix$overall, 1, sum) + 3
   #if(hansenBatch$brown) nodeSums['brown'] <- 2
@@ -62,7 +62,7 @@
   #  if(identical(dim(modelsMatrixSubset), NULL)) kMatrix[, i] <- modelsMatrixSubset # is modelsMatrixSubset a 1-d vector?
   #  else kMatrix[, i] <- apply(modelsMatrixSubset, 2, sum) 
   #}
-  modelAvgAlpha <- mean(alphaVector, na.rm = TRUE)
+  modelAvgAlpha <- mean(sqrt.alphaVector, na.rm = TRUE)
   modelAvgSigmaSq <- mean(sigmaSqVector, na.rm = TRUE)
   outdata <- list(modelsMatrix = modelsMatrix, nodeWeightsMatrix = list(unnormalized = nodeWeightsMatrix.unnormalized, allNodes = nodeWeightsMatrix.allNodes), modelAvgAlpha = modelAvgAlpha, modelAvgSigmaSq = modelAvgSigmaSq, thetaMatrix = thetaMatrix)
   class(outdata) <- 'hansenSummary'
@@ -89,7 +89,7 @@
   #message("The properties of this support value have not been studied and are likely to be biased strongly toward the median value of\nK, as K is largest at the median values (they are distributed according to Stirling numbers of the first kind).")
   #print(hansenSummary$kMatrix)
   cat("\nMODEL-AVERAGED PARAMETERS")
-  cat("\nalpha =", hansenSummary$modelAvgAlpha)
+  cat("\nsqrt.alpha =", hansenSummary$modelAvgAlpha)
   cat("\nsigma^2 =", hansenSummary$modelAvgSigmaSq)
   if(any(dim(hansenSummary$thetaMatrix) > 12)) message(paste("\ntheta matrix is too long to display; access through the summary object"))
   else {

Modified: pkg/inst/VERSIONS
===================================================================
--- pkg/inst/VERSIONS	2009-09-17 05:00:06 UTC (rev 238)
+++ pkg/inst/VERSIONS	2010-02-09 17:55:52 UTC (rev 239)
@@ -1,4 +1,7 @@
-v0.9-3  in the works
+v0.9-4	9 February 2010
+- changed "alpha" to "sqrt.alpha" throughout for compatibility with updated ouch
+
+v0.9-3  17 Sept 2009 
 - Corrected an error in which branches were painted in the Carex example
 
 v0.9-2  8 September 2009



More information about the Mattice-commits mailing list