[Mattice-commits] r174 - pkg/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Feb 24 07:27:27 CET 2009


Author: andrew_hipp
Date: 2009-02-24 07:27:27 +0100 (Tue, 24 Feb 2009)
New Revision: 174

Modified:
   pkg/R/batchHansen.R
   pkg/R/informationCriterion.R
   pkg/R/multiModel.R
   pkg/R/regimes.R
   pkg/R/summarizingAnalyses.R
Log:
changing T to TRUE throughout

Modified: pkg/R/batchHansen.R
===================================================================
--- pkg/R/batchHansen.R	2009-02-24 06:19:14 UTC (rev 173)
+++ pkg/R/batchHansen.R	2009-02-24 06:27:27 UTC (rev 174)
@@ -41,15 +41,15 @@
         message("Data assumed to be in the same order as nodes;\nany data not associated with a terminal branch will be ignored")
         dataFlag <- 'sameOrderNodes'
         }
-      if(identical(dataFlag, NULL)) stopFlag <- T
+      if(identical(dataFlag, NULL)) stopFlag <- TRUE
       message("-------------------\n")
       }
     else dataFlag <- 'named'
     if(stopFlag) stop("Correct discrepancies between trees and data and try again!")
     }
   if(!identical(di, NULL)) dir.create(di)
-  if(class(try(alpha, silent = T)) == 'try-error') alpha = 1
-  if(class(try(sigma, silent = T)) == 'try-error') sigma = 1
+  if(class(try(alpha, silent = TRUE)) == 'try-error') alpha = 1
+  if(class(try(sigma, silent = TRUE)) == 'try-error') sigma = 1
   ar = regimeVectors(ouchTrees, cladeMembersList, maxNodes)
   hansenBatch <- list(length(ouchTrees))
   thetas <- list(length(ouchTrees))

Modified: pkg/R/informationCriterion.R
===================================================================
--- pkg/R/informationCriterion.R	2009-02-24 06:19:14 UTC (rev 173)
+++ pkg/R/informationCriterion.R	2009-02-24 06:27:27 UTC (rev 174)
@@ -9,12 +9,12 @@
     AICc[i] <- u[i] + (2 * K[i] * (n / (n - K[i] - 1)))
     AIC[i] <- u[i] + (2 * K[i])
     BIC[i] <- u[i] + (log(n) * K[i]) }
-  deltaAIC <- as.vector(lapply(AIC, function(x, allX) {x - min(allX, na.rm = T)}, allX = AIC), mode = "numeric")
-  deltaAICc <- as.vector(lapply(AICc, function(x, allX) {x - min(allX, na.rm = T)}, allX = AICc), mode = "numeric")
-  deltaBIC <- as.vector(lapply(BIC, function(x, allX) {x - min(allX, na.rm = T)}, allX = BIC), mode = "numeric")
-  AICwi <- as.vector(lapply(deltaAIC, function(x, allDelta) {exp(-0.5 * x) / sum(exp(-0.5 * allDelta), na.rm = T)}, allDelta = deltaAIC), mode = "numeric")
-  AICcwi <- as.vector(lapply(deltaAICc, function(x, allDelta) {exp(-0.5 * x) / sum(exp(-0.5 * allDelta), na.rm = T)}, allDelta = deltaAICc), mode = "numeric")
-  BICwi <- as.vector(lapply(deltaBIC, function(x, allDelta) {exp(-0.5 * x) / sum(exp(-0.5 * allDelta), na.rm = T)}, allDelta = deltaBIC), mode = "numeric")
+  deltaAIC <- as.vector(lapply(AIC, function(x, allX) {x - min(allX, na.rm = TRUE)}, allX = AIC), mode = "numeric")
+  deltaAICc <- as.vector(lapply(AICc, function(x, allX) {x - min(allX, na.rm = TRUE)}, allX = AICc), mode = "numeric")
+  deltaBIC <- as.vector(lapply(BIC, function(x, allX) {x - min(allX, na.rm = TRUE)}, allX = BIC), mode = "numeric")
+  AICwi <- as.vector(lapply(deltaAIC, function(x, allDelta) {exp(-0.5 * x) / sum(exp(-0.5 * allDelta), na.rm = TRUE)}, allDelta = deltaAIC), mode = "numeric")
+  AICcwi <- as.vector(lapply(deltaAICc, function(x, allDelta) {exp(-0.5 * x) / sum(exp(-0.5 * allDelta), na.rm = TRUE)}, allDelta = deltaAICc), mode = "numeric")
+  BICwi <- as.vector(lapply(deltaBIC, function(x, allDelta) {exp(-0.5 * x) / sum(exp(-0.5 * allDelta), na.rm = TRUE)}, allDelta = deltaBIC), mode = "numeric")
   outdata <- list(names = names, u = u, K = K, AIC = AIC, AICc = AICc, BIC = BIC, AICwi = AICwi, AICcwi = AICcwi, BICwi = BICwi)
   class(outdata) <- 'informationCriterion'
   return(outdata)

Modified: pkg/R/multiModel.R
===================================================================
--- pkg/R/multiModel.R	2009-02-24 06:19:14 UTC (rev 173)
+++ pkg/R/multiModel.R	2009-02-24 06:27:27 UTC (rev 174)
@@ -21,7 +21,7 @@
   outMatrix <- matrix(NA, nrow = length(modelsAll), ncol = length(paramHeader), dimnames = list(modelsAll, paramHeader))
   compareK <- rep(NA, length(models)); names(compareK) <- models
   comparelnL <- rep(NA, length(models)); names(comparelnL) <- models
-  modelsSplit <- strsplit(models, ".", fixed = T)
+  modelsSplit <- strsplit(models, ".", fixed = TRUE)
 
   for(i in modelsSplit) {
    model <- paste(i[1], ".", i[2], sep = "")

Modified: pkg/R/regimes.R
===================================================================
--- pkg/R/regimes.R	2009-02-24 06:19:14 UTC (rev 173)
+++ pkg/R/regimes.R	2009-02-24 06:27:27 UTC (rev 174)
@@ -111,7 +111,7 @@
   for(i in seq(numNodes)) nodeMatrix[, i] <- unlist(lapply(ouchTrees, isMonophyletic, taxa = nodeMembers[[i]]))
   for(i in seq(numTrees)) {
     tree <- ouchTrees[[i]]
-    regMatrices[[i]] <- regMatrix * as.numeric(matrix(nodeMatrix[i, ], dim(regMatrix)[1], dim(regMatrix)[2], byrow = T)) # multiplies regMatrix by nodes present
+    regMatrices[[i]] <- regMatrix * as.numeric(matrix(nodeMatrix[i, ], dim(regMatrix)[1], dim(regMatrix)[2], byrow = TRUE)) # multiplies regMatrix by nodes present
     regMatrices[[i]][1:(dim(regMatrices[[i]])[1] - 1), ][which(apply(regMatrices[[i]][1:(dim(regMatrices[[i]])[1] - 1), ], 1, sum) == 0), ] <- rep(NA, numNodes) # set to NA regimes that have no nodes, except for OU1 model
     regMatrices[[i]][duplicated(apply(regMatrices[[i]], 1, as.decimal)), ] <- rep(NA, numNodes) ## set to NA non-unique regimes
     dimnames(regMatrices[[i]]) <- list(seq(dim(regMatrices[[i]])[1]), dimnames(regMatrices[[i]])[[2]])
@@ -163,7 +163,7 @@
     remainder <- n - i
     if (maxNodes > 1 && remainder > 0) {
       nextMat <- regimeMatrix(remainder, maxNodes - 1)
-      temp <- cbind(matrix(temp, dim(nextMat)[1], length(temp), byrow = T), nextMat)
+      temp <- cbind(matrix(temp, dim(nextMat)[1], length(temp), byrow = TRUE), nextMat)
       }
     else temp[(i+1):n] <- rep(0, length((i+1):n))
     outmat <- rbind(outmat, temp)

Modified: pkg/R/summarizingAnalyses.R
===================================================================
--- pkg/R/summarizingAnalyses.R	2009-02-24 06:19:14 UTC (rev 173)
+++ pkg/R/summarizingAnalyses.R	2009-02-24 06:27:27 UTC (rev 174)
@@ -28,24 +28,24 @@
       modelsMatrixSubset <- modelsMatrix[[tree]][hansenBatch$regMatrix$overall[, nodes[i]] == 1, ] # subset models that contain node i
       if(identical(dim(modelsMatrixSubset), NULL)) # is modelsMatrixSubset a 1-d vector? if so then:
         nodeWeightsSummed[, nodes[i]] <- nodeWeightsSummed[, nodes[i]] + replace.matrix(modelsMatrixSubset, NA, 0) # because extracting a single row yields a vector, and dim returns NULL for a vector
-      else nodeWeightsSummed[, nodes[i]] <- nodeWeightsSummed[, nodes[i]] + colSums(modelsMatrixSubset, na.rm = T)
+      else nodeWeightsSummed[, nodes[i]] <- nodeWeightsSummed[, nodes[i]] + colSums(modelsMatrixSubset, na.rm = TRUE)
 	  }
-    sigmaSqVector[tree] <- weighted.mean(hansenBatch$hansens[[tree]][, 'sigma.squared'], bic, na.rm = T)
+    sigmaSqVector[tree] <- weighted.mean(hansenBatch$hansens[[tree]][, 'sigma.squared'], bic, na.rm = TRUE)
     if(hansenBatch$brown) bicOU <- bic[1: (length(bic) - 1)]
     alphaVector[tree] <- ifelse(hansenBatch$brown, 
-                                weighted.mean(hansenBatch$hansens[[tree]][1:(nmodels - 1), 'theta / alpha'], bicOU, na.rm = T),
-                                weighted.mean(hansenBatch$hansens[[tree]][ , 'theta / alpha'], bic, na.rm = T) 
+                                weighted.mean(hansenBatch$hansens[[tree]][1:(nmodels - 1), 'theta / alpha'], bicOU, na.rm = TRUE),
+                                weighted.mean(hansenBatch$hansens[[tree]][ , 'theta / alpha'], bic, na.rm = TRUE) 
                                 )
     if(hansenBatch$brown) w <- bicOU else w <- bic
     thetaMatrix[tree, ] <- apply(hansenBatch$thetas[[tree]], 2, 
                                  weighted.mean, 
                                  w = w, 
-                                 na.rm = T
+                                 na.rm = TRUE
                                  )
                                  
   }
   # in this matrix, the weight for each node is averaged only over trees that possess that node
-  nodeWeightsMatrix.unnormalized <- nodeWeightsSummed / matrix(nodeSums, nrow = dim(nodeWeightsSummed)[1], ncol = nnodes, byrow = T)
+  nodeWeightsMatrix.unnormalized <- nodeWeightsSummed / matrix(nodeSums, nrow = dim(nodeWeightsSummed)[1], ncol = nnodes, byrow = TRUE)
   # in this matrix, the weight for each node is averaged over all trees
   nodeWeightsMatrix.allNodes <- nodeWeightsSummed / ntrees 
   
@@ -62,8 +62,8 @@
   #  if(identical(dim(modelsMatrixSubset), NULL)) kMatrix[, i] <- modelsMatrixSubset # is modelsMatrixSubset a 1-d vector?
   #  else kMatrix[, i] <- apply(modelsMatrixSubset, 2, sum) 
   #}
-  modelAvgAlpha <- mean(alphaVector, na.rm = T)
-  modelAvgSigmaSq <- mean(sigmaSqVector, na.rm = T)
+  modelAvgAlpha <- mean(alphaVector, na.rm = TRUE)
+  modelAvgSigmaSq <- mean(sigmaSqVector, na.rm = TRUE)
   outdata <- list(modelsMatrix = modelsMatrix, nodeWeightsMatrix = list(unnormalized = nodeWeightsMatrix.unnormalized, allNodes = nodeWeightsMatrix.allNodes), modelAvgAlpha = modelAvgAlpha, modelAvgSigmaSq = modelAvgSigmaSq, thetaMatrix = thetaMatrix)
   class(outdata) <- 'hansenSummary'
   return(outdata)



More information about the Mattice-commits mailing list