[Gmm-commits] r49 - in pkg/gmm: . R inst/doc
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Apr 12 18:58:13 CEST 2012
Author: chaussep
Date: 2012-04-12 18:58:12 +0200 (Thu, 12 Apr 2012)
New Revision: 49
Modified:
pkg/gmm/DESCRIPTION
pkg/gmm/NEWS
pkg/gmm/R/FinRes.R
pkg/gmm/R/Methods.gmm.R
pkg/gmm/R/getModel.R
pkg/gmm/R/gmm.R
pkg/gmm/R/momentEstim.R
pkg/gmm/inst/doc/gmm_with_R.pdf
Log:
Cleaned the codes
Modified: pkg/gmm/DESCRIPTION
===================================================================
--- pkg/gmm/DESCRIPTION 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/DESCRIPTION 2012-04-12 16:58:12 UTC (rev 49)
@@ -1,6 +1,6 @@
Package: gmm
Version: 1.4-0
-Date: 2011-11-30
+Date: 2012-04-12
Title: Generalized Method of Moments and Generalized Empirical
Likelihood
Author: Pierre Chausse <pchausse at uwaterloo.ca>
Modified: pkg/gmm/NEWS
===================================================================
--- pkg/gmm/NEWS 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/NEWS 2012-04-12 16:58:12 UTC (rev 49)
@@ -25,6 +25,8 @@
and avoid NA's when computing log(1-lambda'gt).
o Sometimes, problems happen in GMM estimation because of the bad first step estimates used to compute the weighting matrix.
The first step estimates are usually computed using the identity matrix. The vector is now printed for better control.
+o Cleaned the codes. The data are in object$dat and we can get the moment matrix by calling gt <- object$g(object$coef,object$dat) for linear and
+ non-linear models, where object is of class gmm.
Changes in version 1.3-8
Modified: pkg/gmm/R/FinRes.R
===================================================================
--- pkg/gmm/R/FinRes.R 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/R/FinRes.R 2012-04-12 16:58:12 UTC (rev 49)
@@ -21,23 +21,12 @@
FinRes.baseGmm.res <- function(z, object, ...)
{
P <- object
- if(!is.null(object$gform))
- {
- dat <- z$dat
- x <- dat$x
- }
- else
- x <- z$x
+ x <- z$dat
+ n <- ifelse(is.null(nrow(z$gt)),length(z$gt),nrow(z$gt))
- n <- z$n
- gradv <- z$gradv
+ G <- z$G
iid <- z$iid
- if(P$gradvf)
- G <- gradv(z$coefficients, x)
- else
- G <- gradv(z$coefficients, x, g = object$g)
-
if (P$vcov == "iid")
{
v <- iid(z$coefficients, x, z$g, P$centeredVcov)
@@ -94,7 +83,6 @@
dimnames(z$vcov) <- list(names(z$coefficients), names(z$coefficients))
z$call <- P$call
-
if(is.null(P$weightsMatrix))
{
if(P$wmatrix == "ident")
@@ -112,7 +100,6 @@
z$weightsMatrix <- P$weightsMatrix
z$infVcov <- P$vcov
z$infWmatrix <- P$wmatrix
- z$G <- G
z$met <- P$type
z$kernel <- P$kernel
z$coefficients <- c(z$coefficients)
Modified: pkg/gmm/R/Methods.gmm.R
===================================================================
--- pkg/gmm/R/Methods.gmm.R 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/R/Methods.gmm.R 2012-04-12 16:58:12 UTC (rev 49)
@@ -170,7 +170,7 @@
{
if (is(x, "function"))
{
- gmat <- x(y, theta)
+ gmat <- x(theta, y)
return(gmat)
}
else
Modified: pkg/gmm/R/getModel.R
===================================================================
--- pkg/gmm/R/getModel.R 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/R/getModel.R 2012-04-12 16:58:12 UTC (rev 49)
@@ -42,8 +42,12 @@
object$type <- "One step GMM with fixed W"
}
object$gform<-object$g
- g <- function(tet, x, ny = dat$ny, nh = dat$nh, k = dat$k)
+ g <- function(tet, dat)
{
+ x <- dat$x
+ ny <- dat$ny
+ nh <- dat$nh
+ k <- dat$k
tet <- matrix(tet, ncol = k)
e <- x[,1:ny] - x[,(ny+1):(ny+k)] %*% t(tet)
gt <- e * x[, ny+k+1]
@@ -51,14 +55,17 @@
for (i in 2:nh) gt <- cbind(gt, e*x[, (ny+k+i)])
return(gt)
}
- gradv <- function(tet, x, ny = dat$ny, nh = dat$nh, k = dat$k, g = NULL)
+ gradv <- function(dat)
{
- a <- g
- tet <- NULL
+ x <- dat$x
+ ny <- dat$ny
+ nh <- dat$nh
+ k <- dat$k
dgb <- -(t(x[,(ny+k+1):(ny+k+nh)]) %*% x[,(ny+1):(ny+k)]) %x% diag(rep(1,ny))/nrow(x)
return(dgb)
}
object$g <- g
+ object$x <- dat
}
else
{
@@ -85,7 +92,7 @@
{
gt <- g(thet,x)
if(centeredVcov) gt <- residuals(lm(gt~1))
- n <- ifelse(is.null(nrow(x)), length(x), nrow(x))
+ n <- ifelse(is.null(nrow(gt)), length(gt), nrow(gt))
v <- crossprod(gt,gt)/n
return(v)
}
Modified: pkg/gmm/R/gmm.R
===================================================================
--- pkg/gmm/R/gmm.R 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/R/gmm.R 2012-04-12 16:58:12 UTC (rev 49)
@@ -125,8 +125,12 @@
}
-.tetlin <- function(x, w, ny, nh, k, gradv, g, type=NULL, inv=TRUE)
+.tetlin <- function(dat, w, gradv, g, type=NULL, inv=TRUE)
{
+ x <- dat$x
+ ny <- dat$ny
+ nh <- dat$nh
+ k <- dat$k
n <- nrow(x)
ym <- as.matrix(x[,1:ny])
xm <- as.matrix(x[,(ny+1):(ny+k)])
@@ -147,7 +151,7 @@
else
{
par <- c(t(par))
- g2sls <- g(par, x, ny, nh, k)
+ g2sls <- g(par, dat)
w <- crossprod(g2sls)/n
gb <- matrix(colMeans(g2sls), ncol = 1)
value <- crossprod(gb, solve(w, gb))
@@ -168,7 +172,7 @@
whx <- w%*% (crossprod(hm, xm) %x% diag(ny))
wvecyh <- w%*%matrix(crossprod(ym, hm), ncol = 1)
}
- dg <- gradv(NULL,x, ny, nh, k)
+ dg <- gradv(dat)
xx <- crossprod(dg, whx)
par <- solve(xx, crossprod(dg, wvecyh))
}
@@ -185,7 +189,7 @@
else
par <- solve(crossprod(hm,xm),crossprod(hm,ym)) }
}
- gb <- matrix(colSums(g(par, x, ny, nh, k))/n, ncol = 1)
+ gb <- matrix(colSums(g(par, dat))/n, ncol = 1)
if(inv)
value <- crossprod(gb, solve(w, gb))
else
Modified: pkg/gmm/R/momentEstim.R
===================================================================
--- pkg/gmm/R/momentEstim.R 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/R/momentEstim.R 2012-04-12 16:58:12 UTC (rev 49)
@@ -148,12 +148,17 @@
else
names(z$coefficients) <- names(P$t0)
- z$x <- P$x
+ if(P$gradvf)
+ z$G <- P$gradv(z$coefficients, P$x)
+ else
+ z$G <- P$gradv(z$coefficients, P$x, g = P$g)
+
+ z$dat <- P$x
z$gt <- P$g(z$coefficients, P$x)
z$gradv <- P$gradv
z$iid <- P$iid
z$g <- P$g
-
+
class(z) <- paste(P$TypeGmm,".res",sep="")
return(z)
}
@@ -162,10 +167,7 @@
{
P <- object
g <- P$g
- if (is.null(P$data))
- dat <- getDat(P$gform, P$x)
- else
- dat <- getDat(P$gform, P$x, P$data)
+ dat <- P$x
x <- dat$x
k <- dat$k
@@ -177,42 +179,40 @@
if (q == k2 | P$wmatrix == "ident")
{
w <- diag(q)
- res <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, P$g)
+ res <- .tetlin(dat, w, P$gradv, P$g)
z = list(coefficients = res$par, objective = res$value, dat = dat, k = k, k2 = k2, n = n, q = q, df = df)
}
else
{
if (P$vcov == "iid")
{
- res2 <- .tetlin(x, diag(q), dat$ny, dat$nh, dat$k, P$gradv, P$g, type="2sls")
+ res2 <- .tetlin(dat, diag(q), P$gradv, P$g, type="2sls")
initTheta <- NULL
}
if (P$vcov == "HAC")
{
- res1 <- .tetlin(x, diag(q), dat$ny, dat$nh, dat$k, P$gradv, P$g, type="2sls")
+ res1 <- .tetlin(dat, diag(q), P$gradv, P$g, type="2sls")
initTheta <- res1$par
if(P$centeredVcov)
- gmat <- lm(g(res1$par, x)~1)
+ gmat <- lm(g(res1$par, dat)~1)
else
{
- gmat <- g(res1$par, x)
+ gmat <- g(res1$par, dat)
class(gmat) <- "gmmFct"
}
w <- kernHAC(gmat, kernel = P$kernel, bw = P$bw, prewhite = P$prewhite,
ar.method = P$ar.method, approx = P$approx, tol = P$tol, sandwich = FALSE)
- res2 <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, g)
+ res2 <- .tetlin(dat, w, P$gradv, g)
}
-
z = list(coefficients = res2$par, objective = res2$value, dat=dat, k=k, k2=k2, n=n, q=q, df=df, initTheta = initTheta)
}
- z$gt <- g(z$coefficients, x)
+ z$gt <- g(z$coefficients, dat)
b <- z$coefficients
y <- as.matrix(model.response(dat$mf, "numeric"))
ny <- dat$ny
b <- t(matrix(b, nrow = dat$ny))
x <- as.matrix(model.matrix(dat$mt, dat$mf, NULL))
yhat <- x %*% b
- z$dat <- dat
z$fitted.values <- yhat
z$residuals <- y - yhat
z$terms <- dat$mt
@@ -222,6 +222,8 @@
z$gradv <- P$gradv
z$iid <- P$iid
z$g <- P$g
+ z$G <- P$gradv(dat)
+
namex <- colnames(dat$x[,(dat$ny+1):(dat$ny+dat$k)])
nameh <- colnames(dat$x[,(dat$ny+dat$k+1):(dat$ny+dat$k+dat$nh)])
@@ -249,11 +251,8 @@
{
P <- object
g <- P$g
- if (is.null(P$data))
- dat <- getDat(P$gform, P$x)
- else
- dat <- getDat(P$gform, P$x, P$data)
+ dat <- P$x
x <- dat$x
k <- dat$k
k2 <- k*dat$ny
@@ -264,13 +263,13 @@
if (q == k2 | P$wmatrix == "ident")
{
w <- diag(q)
- res <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, g)
+ res <- .tetlin(dat, w, P$gradv, g)
z = list(coefficients = res$par, objective = res$value, dat = dat, k = k, k2 = k2, n = n, q = q, df = df)
}
else
{
w <- diag(q)
- res <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, g, type="2sls")
+ res <- .tetlin(dat, w, P$gradv, g, type="2sls")
initTheta <- res$par
ch <- 100000
j <- 1
@@ -280,10 +279,10 @@
if (P$vcov == "HAC")
{
if (P$centeredVcov)
- gmat <- lm(g(tet, x)~1)
+ gmat <- lm(g(tet, dat)~1)
else
{
- gmat <- g(tet, x)
+ gmat <- g(tet, dat)
class(gmat) <- "gmmFct"
}
if (j==1)
@@ -292,7 +291,7 @@
ar.method = P$ar.method, tol = P$tol)
w <- vcovHAC(gmat, weights = fixedKernW, sandwich = FALSE)
}
- res <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, g)
+ res <- .tetlin(dat, w, P$gradv, g)
ch <- crossprod(abs(tet- res$par)/tet)^.5
if (j>P$itermax)
{
@@ -305,14 +304,13 @@
}
z = list(coefficients = res$par, objective = res$value, dat=dat, k=k, k2=k2, n=n, q=q, df=df, initTheta=initTheta)
}
- z$gt <- g(z$coefficients, x)
+ z$gt <- g(z$coefficients, dat)
b <- z$coefficients
y <- as.matrix(model.response(dat$mf, "numeric"))
ny <- dat$ny
b <- t(matrix(b, nrow = dat$ny))
x <- as.matrix(model.matrix(dat$mt, dat$mf, NULL))
yhat <- x %*% b
- z$dat <- dat
z$fitted.values <- yhat
z$residuals <- y - yhat
z$terms <- dat$mt
@@ -322,7 +320,8 @@
z$gradv <- P$gradv
z$iid <- P$iid
z$g <- P$g
-
+ z$G <- P$gradv(dat)
+
namex <- colnames(dat$x[,(dat$ny+1):(dat$ny+dat$k)])
nameh <- colnames(dat$x[,(dat$ny+dat$k+1):(dat$ny+dat$k+dat$nh)])
@@ -493,7 +492,12 @@
else
names(z$coefficients) <- names(P$t0)
- z$x <- P$x
+ if(P$gradvf)
+ z$G <- P$gradv(z$coefficients, P$x)
+ else
+ z$G <- P$gradv(z$coefficients, P$x, g = P$g)
+
+ z$dat <- P$x
z$gt <- P$g(z$coefficients, P$x)
z$gradv <- P$gradv
z$iid <- P$iid
@@ -509,11 +513,8 @@
fixedKernWeights <- TRUE # to be changed or included as an option in gmm() in future version
P <- object
g <- P$g
- if (is.null(P$data))
- dat <- getDat(P$gform, P$x)
- else
- dat <- getDat(P$gform, P$x, P$data)
+ dat <- P$x
x <- dat$x
k <- dat$k
k2 <- k*dat$ny
@@ -524,15 +525,15 @@
if (q == k2 | P$wmatrix == "ident")
{
w <- diag(q)
- res <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, g)
+ res <- .tetlin(dat, w, P$gradv, g)
z = list(coefficients = res$par, objective = res$value, dat = dat, k = k, k2 = k2, n = n, q = q, df = df)
- P$weightMessage <- "No CUE needed because the model if just identified"
+ P$weightMessage <- "No CUE needed because the model is just identified"
}
else
{
if (is.null(P$t0))
{
- P$t0 <- .tetlin(x,diag(q), dat$ny, dat$nh, dat$k, P$gradv, g, type="2sls")$par
+ P$t0 <- .tetlin(dat,diag(q), P$gradv, g, type="2sls")$par
initTheta <- P$t0
if (fixedKernWeights)
P$weightMessage <- "Weights for kernel estimate of the covariance are fixed and based on the first step estimate of Theta"
@@ -550,7 +551,7 @@
if (fixedKernWeights)
{
- gt0 <- g(P$t0,x)
+ gt0 <- g(P$t0,dat)
gt0 <- lm(gt0~1)
P$fixedKernW <- weightsAndrews(gt0, prewhite=P$prewhite,
bw = P$bw, kernel = P$kernel, approx = P$approx,
@@ -559,15 +560,15 @@
if (P$optfct == "optim")
- res2 <- optim(P$t0,.objCue, x = x, P = P, ...)
+ res2 <- optim(P$t0,.objCue, x = dat, P = P, ...)
if (P$optfct == "nlminb")
{
- res2 <- nlminb(P$t0,.objCue, x = x, P = P, ...)
+ res2 <- nlminb(P$t0,.objCue, x = dat, P = P, ...)
res2$value <- res2$objective
}
if (P$optfct == "optimize")
{
- res2 <- optimize(.objCue,P$t0, x = x, P = P, ...)
+ res2 <- optimize(.objCue,P$t0, x = dat, P = P, ...)
res2$par <- res2$minimum
res2$value <- res2$objective
}
@@ -578,7 +579,7 @@
z$algoInfo <- list(convergence = res2$convergence, counts = res2$evaluations, message = res2$message)
}
- z$gt <- g(z$coefficients, x)
+ z$gt <- g(z$coefficients, dat)
b <- z$coefficients
y <- as.matrix(model.response(dat$mf, "numeric"))
ny <- dat$ny
@@ -595,6 +596,8 @@
z$gradv <- P$gradv
z$iid <- P$iid
z$g <- P$g
+ z$G <- P$gradv(dat)
+
z$cue <- list(weights=P$fixedKernW,message=P$weightMessage)
namex <- colnames(dat$x[,(dat$ny+1):(dat$ny+dat$k)])
@@ -679,7 +682,12 @@
else
names(z$coefficients) <- names(P$t0)
- z$x <- P$x
+ if(P$gradvf)
+ z$G <- P$gradv(z$coefficients, P$x)
+ else
+ z$G <- P$gradv(z$coefficients, P$x, g = P$g)
+
+ z$dat <- P$x
z$gradv <- P$gradv
z$gt <- P$g(z$coefficients, P$x)
z$iid <- P$iid
@@ -878,11 +886,8 @@
{
P <- object
g <- P$g
- if (is.null(P$data))
- dat <- getDat(P$gform, P$x)
- else
- dat <- getDat(P$gform, P$x, P$data)
+ dat <- P$x
x <- dat$x
k <- dat$k
k2 <- k*dat$ny
@@ -901,10 +906,10 @@
warning("The matrix of weights is not strictly positive definite")
}
- res2 <- .tetlin(x, w, dat$ny, dat$nh, dat$k, P$gradv, g, inv=FALSE)
+ res2 <- .tetlin(dat, w, P$gradv, g, inv=FALSE)
z = list(coefficients = res2$par, objective = res2$value, dat=dat, k=k, k2=k2, n=n, q=q, df=df)
- z$gt <- g(z$coefficients, x)
+ z$gt <- g(z$coefficients, dat)
b <- z$coefficients
y <- as.matrix(model.response(dat$mf, "numeric"))
ny <- dat$ny
@@ -921,7 +926,8 @@
z$gradv <- P$gradv
z$iid <- P$iid
z$g <- P$g
-
+ z$G <- P$gradv(dat)
+
namex <- colnames(dat$x[,(dat$ny+1):(dat$ny+dat$k)])
nameh <- colnames(dat$x[,(dat$ny+dat$k+1):(dat$ny+dat$k+dat$nh)])
@@ -1020,7 +1026,12 @@
else
names(z$coefficients) <- names(P$t0)
- z$x <- P$x
+ if(P$gradvf)
+ z$G <- P$gradv(z$coefficients, P$x)
+ else
+ z$G <- P$gradv(z$coefficients, P$x, g = P$g)
+
+ z$dat <- P$x
z$gt <- P$g(z$coefficients, P$x)
z$gradv <- P$gradv
z$iid <- P$iid
Modified: pkg/gmm/inst/doc/gmm_with_R.pdf
===================================================================
--- pkg/gmm/inst/doc/gmm_with_R.pdf 2012-04-10 16:22:36 UTC (rev 48)
+++ pkg/gmm/inst/doc/gmm_with_R.pdf 2012-04-12 16:58:12 UTC (rev 49)
@@ -117,634 +117,320 @@
77 0 obj
<< /S /GoTo /D [78 0 R /Fit ] >>
endobj
-93 0 obj <<
-/Length 3298
+81 0 obj <<
+/Length 3317
/Filter /FlateDecode
>>
stream
-xÚksÛ6ò»?R3Càýv7½dz×ønæ&íZ¢-M%Q¥8¾_ûÂåx2I`±Xì{ÊÇ$Onoryþtwóæ}'ªÎ´*Mr÷X¢Ij2elr·L¾¤?ÏTÚoá¿ýé¸Çîq6/ê2½íð£;´ðØÀßú8°äÉOÝ>V=|ù±Fdß·` ÇM¨vËÙw¿&E²Hæ@U5SòâïÄõÇAãq þþ:íh§#âphÆí/eÌ¢(2Uh`ò»À ï¼²Ô3×¹Îl]%s£³ÊTúOÄÛ!Uùó
-©;
-ðß0ÓUúG®YYÔiXoÞÝÝü}£`'@4*©<y$íÍ?ód ã¿&yVØ&y"¨mbÂoÏ7ÿò ¹ÖÍl¥+¤S×6+mTy\üöÈQ ©íâH´#{ó¾ÍUYe -sRBt·~H
-ðuèö³9¸ C&¤é:}xdÅ_üq¤YZÜEpÛâ[Ç3[UËN´A6¼é&}¨V¿?²ò Ú túó[ÖØûîE]aêH»¡Îɬ1ð$=`´;ÑÊJy
-ðý%
-p¾c
-Æy]´Úx%ÃuîkÅzz*g½Z#h¦NÝ©:ÖÙÚƪ ÖUVÍZÇ2VyëÚ0È¿fe¶´É£%E`5²äq»½ÄÛ!Í楶é[>**âaM³»±%)ÔÂ
-~ö;[ahg¥nDbý¹*:¶?fuÓðbx3ü΢ÌIj[`¾D2N«±¤!8O³=óF.TjLNA`uM=PGÚ÷;¯,GQm:ÁÃå ö(f$àñH7Å2cÒ=jYX·Ãed]KsT!Hz\ñ(Á~%<8ÆÀ0rë~oQ?6]ØÂ
-úÒë ÒîdKApbtZ^~8"@Þâ£$z68ÊUÏ´uvÁÌCü¬l
-ºáÌnþeerxLÜëï·7É)(<®ZÛ îܲ;7µwî\§@ÿù8Uªs-ÅeIÚãN÷îàÓYdbQx:xxÿÄx önüÑèùáZ§l{ñH?ãê§Ohþ-H&ÐMØÜ*6kÜeV[ /ÿ{~¿§þ0+5ø
h±Á¨¯cø÷o^ö0ßÞy¿Hob¿Y§.P¬Eù&÷"4´3¢áå|¯37#{maÏ]û÷I¿9;5aÉ\YéR²à6ª!©õ>D±2 %§þ$¶£Ê_Ù-% 2#aª5ÃmÞ öî_ÚïFÁpíΣÿÞÀ@_"X0¢ZË·wM0x-JÂÔ4+çÞà_æ :Bê¥+u#:Ë:²©Î@¾UYóÚÎgå&+LE¥6`R]d-x3E8/ó<ýàóhä
-'·ËÓâ(®ì깪*Â8×&ÓU¹uÌÉMæIË/ò%!KPÅD¾DÃèÿnáóüc
©øý>ZDC+ÛÏn
-¡[±6
-ãÖû5òæ0·î EV(È'.5:×çJS c<óWKKTþ8ºßG¶ËÊj§£ÎC ï.ð!½ù;÷Ü¢ûN~!C·»:ʾ&è(Ûè+A¬cI"Ñq}Ì¡w,z9ó6ûÝI'>aÔ0¹1îÜ
4¾¨-ç5;<R¥á¡c?LP$+lùñØ!¯\
-#ÊÝ|¡H°°xËúõ,£>_;ðôÂEX.ãë Lsú)Ü¢!¹nªtø9ûHîF£Â¯
M?àpÉBsÔN¡à9¢×Äå_)]tδ½ß"ìè`þÃêC`wô¤#¤0³åá×ÝxñÇ cy+´ü c8¹´KvØá*9N]qÚʨg-Ócϳ^ðvpY?â(ÄôTï6q¥Ô½¯vCßÉî¨Tø²~]×WïÙ*0=Q:ÙE í&Ws{Qú¨`mT1À')Û£/O*æïº,½íãàÂåcT²mÂÊæäIqÉKÛQN¦ÝH¢"¯!¤Ã&Àû84È ã-ÓOù{_¥ðër{ªo ߯Ã9Á°¸z+ìkËô¢¬óP¡ áòCWö`v(rè:U_ß©3Í
-.[tóQò×]yÁ7¡tÎf}O9ø°\o³Üî#çwÅ[)Oh¶Ve 4ÄséÚq²;YÚ.B$âTaGÙ7e×xCjô@¾
-À»¨BÅãÈüZvõ©§ïKi[¸V: í¨åÇàb# èèr@|í¢Ò´ÃÜñ{×r$cÏ`J%L)lyVDwl4Få°ãpd,KBÐ2üÀ´uÅ*qâèy+=>¸¼É8ìD'pSBx÷Ôº^¢DÛ(Ð
-׸+¯îZÄóUªÆ9
,Wp¢rÝlrO.ä,Ï2®k ÷'gvA± üDJÔR©ãåÎB`¥(kBÔdJý1 º¤tèmNvÆù´Å(U ü¬#àÆGôµ4N#DØ×~àçÈ9åRîµ?ðO¸´åк÷V¯ÊÕÅã
ËÙn¼w^¹¡Â0¾)HZ;ÌK˲A¢t¦l Xæ§Ï®³Â¸¨#bãê³Æ ÍJ¼#ê_c¸%Ìàä/ôB1Ûo²ßY64Qej(Â*ë«ÈOx=p¤ y?Q»:S¯I'ËÖ*«kqKJÍí© lPá*¯Îr0ÕÒÁ|¦È%2ÝdJû¶nh¼2#Gé
a1ß$I :ÑͶ b/3S×08·[8á}?ªUÈ.O®~F?StA^w>84D²ï;ûjýU9g
-äÈ]©w$¸6¹R?[×2êEMÜkjF(xr¿h$Quÿäû÷±úÔµÕD?î UgEFaíòz óYgàcå®iãk¢7o!Á#å&]/Á®t6ßÊËpÌÞ9´c0TNqÄÄ!,RøÕCf¢Ï%,\~âL¬$X×CÐp˵SÖ£ïIGÏ+u.Q#UJÉ,|4Ø
i%å»ñø:pWk9ø*A÷ 0B´kr!öÔ~ ,_B¢5
-¥'K/P`¢Rwq3MÜö*¥ópLü¸@
-r¥Iܤ6¤Kqkkò%>påEï§ÇÖE0ÀUç³j%Ýü<¡å]&r%´eÉÌA8i®9Êp³y¡úÀhª!`EÅáázçHW*êq
CuýN\Ã
-·ùשּׁ÷Ð_ôpòU½&[M÷wÛãídçQOI3nÇ ßN°6pjBòKµð¨/¹~V/5}Æã3q"Ô¢ôQH×ßøp'f·<9{U&êª$ýZs÷.o¾ß½÷þ3ìúó¿ß¹
-¯äÍ{'àòë\òtì6)2[Z×j¥u~eáeO1 ïQKNÎÜ=Õaë/XåJ å<z%9¸`iNnÇ ï²¥ª®ØâóZçWW
ôeÎó שLèùR¹Ê¸ªä;fdÒß(J ¹´Ê¼îê/W!ÍFQ 1s¤çf1.ñåc5¡ïWr*¡+<µ´Xóüj§øäêÑ%ý֦·£ßåxj_ÙÙ¶õRG¡ ëc j.ÖóïÜ
-Â|Çå4½Fu̾®+äüݨ~¹6éª~érIÕ|×ã&L¾¦cXHðu ¸tV©2²ù7ïË<i2[UMfÁÔ÷«!L7ºSu÷£¬¡ÿÎmdø¿ w~sq]aÔëVã_yÀ»WÀóлâCó/X)ïn}qéÊB¬Ü¯!@ümÜs¿c@·2<H}x î¬6ûݦñÛHJR
-k
¤Ã2¾4e4þ
-$üMV¤ÿV1j?
+xÚ]sÛ6òÝ¿ÒLÄ øÕ¶dÒKfîß½´} %ÚÖÔUªûõ· (Ñn&ã å~ïBYòdÉûL?ÞÞ|÷®4©Rk
+ÜÞ'M]^'5©qMr»K~]ý´6«þ ÿÎÓÇõ&¯ÕûÝÐÂã þöÿÃ/~ê&<ö0òs=ÌÜË2¾Á ¦§Ý
+QwëßoNò2uElÆTLÉ«'¾%÷Îoæ?âüý±Îíª£mDV¶÷D3|)c¾äyÜÛ_xä
EÍlÚTe²q6-]É ÿB¼R5tü?="uçþ׶\ýÙ|]äÕªC¬7oooþ¼1pR¤6Ig)È#Ùn~ý=Kv0ÿs¥yS'ÏuHCø§äóÍ¿½pgB®ò¤IÒH§´hª¤ÌêÔe"äîÚn'¢åÙwïêÑÆe
+Ú²1(%D·Âo©¾Ýi½.À[Ò¯mµzyæG<h6wD <´øÖñÊ`×®mïÖ¶^}
+¨;~`åAA´ORõ׬±/O÷÷²ÜºÂÒD§¡nKçàIzÀ,h¢¥ñàûkàzÇ벺mxéÉ+1|\§£G¦ÔÓëÕ)@3-íJ¿ªc³XÀº²¾PëXÆ&K3[) s,øc]«öAhK^¥9Xly8®±â±U£ ézSØfõ**â°'Ù]ÀÜjëÍý×öA¶ÉÒÂÖ"
+1Àþ·ÌäÛ³º®y3<'濳¨ 3AÚá$XoGQ㬢ӪÒ\¿£ÕùM3W*5
+&UØÄCK÷gÔm¤öýÑ+Ë$ªM_pý'M=
+ðx¦byZFÖqY×ת¡GzyvD¾üE*8(c`ºûÃIì°ü+bKBQx* íQÎ9'ÎlñP
+×4«S@¦ðacA? P©Ê²Àà!©æÌ=óñE°¥-â|§ñhTB*\åYàªaø3uh]8 ³$TW®>#t«0N3wë (êðÖØ(euÉ, Çvd¬¬fÚyåI¬lHì#j
ÔH°sqgÆPÛd©°Í"·¬1!VÒ´j$îüSHø
+Ïý°ÁîFez´Ùa:à¹þ=Pׯ;TXïH'½CõÆKCVAöÁTÕ§ÕäBEhè,U¸¼ædf
+NY¦I¢¸LºmD´yséóÿÄ
+s_ø±1yZh¢vE=aê.ÖI ãL¶:b¾²{Ûµ±ZÀR« á~Æ v²~ÞÚg!r¯c?À¯|+
+þö¯j/cï°`ò¥Ø K¯ñ1c/2Pcf¤ùÌü² ¬UåUnKY+«´Üé³:ª»LÒMëÀÊ"q¦H!ódÏYdÙêO®ÉSÆ»;o§à/¨Þ²$ÉnÍuÌÇW
+ÖIÁ¯r(\!#0ùBEÓ¿eEöäÆ7"&òbð~/¢¡í×H3EPþS+FP!<x·J ¬9@ÑÕ üù éêZøs×d`GM4aÄIÅå8ØOÊ+TUElû#})ªìÒ¬ ß/ã!MúÌnÛù¸ÉÏV
+{º"P&@ìcYÐÛà(tñruøxÌÒ):6a Y~(Q×P¹9Qà c?ÃïgRç¸osÒÞ _-ò_î¼£Æ3ãaWË|u«ÊOHJð$³P
+<Zð}1¥ç/\
+ôjüy@ÁaÓÇÏ;oxEè¨;Ï
+\Å,3Aʦۻ8=Ø?üWÌÍ[§%2/l0(<ýE5ûÓÇ TþAnùAiöx¼9}\×é§ãë^tò0láóð
+Ñ<Yß8Jìám[Í%ɱ¡2Bì÷^öÔVÂAÕ¢SbKvyr¶ß],¹¢~yM·¼évØIÉ¡#ÌÞ¿ôAígÅ£^кmn5È<°\Æ~ÐÏÉCÅïáà|&]ªÍTåüÏ·òiózå绳úQtàùQÃ|ííÇ0¡HÑy|äM,Ë
eùüx ò®öoxiÛ7B^-t¨V¥øIú£|OU³E¤7
+BJ@*Z¬¥ôÂwOamT÷°íæIòÑcd0&ê}öC¤Äð£µ9¿jSäµø¾àW+Õðε½ý4Å1p§}·ÙÉÊ£lm·!8]W¨/îÜ£óBðËjTÖ÷rªÏ&}Ê6¹ºÛ¸%ß1PËàtÅ&xS;tÊxwö!i0¿{x¶ WJáJÞ3|¨3ôãÄX¨ÈZ9ªº>òåU¸0yæJ÷¦Íæá(JûTáÝ[P«]CÃb^ûjíÐaqI6Õ"¿¤
+ÜP óÆ¿ãb;ð2²É=«Úu×ÊJÁÝYÍ.(V]¬~$%jÏc(ÇÕBà]ï»ÔϪMP3ͱSÚTt0à S±³ªò*ÞpAkvÚL´Ñû<CgR\fsçI×¾ádcàÛ¸'oåQ9Ê°¨+P1<\ù±íÆË÷èÕ»£í¤½bæY2ÉBT¤`k9IȹÍ0ÌÏ$,p»&uDlÔûèðSPÿjǵ=Ö%£Ê_4h¡÷âÛ4æ²Ï&ç]¤ £µ.-_~Â{é³ëd=·©©}¹XiUy÷¤Ô>AºÄU«ñ©?8ËtÀTç
+
ùL
økd¶NõýÛÐaeFÒÃ$ c¾h
+ s:ÑͶ b/R/`ðmï5pÂûiV¾/¤|b>b ³Ä'j
×£Hö
+fR'A¾!ù'òÖùÊ;|y¡(Jý
¼ûK
+cRRgUüÇ@eϾQ«O6M¹Ð©»ÎTi^]´®/Ro%õöùVéÉ7Å|9+KÊt)aòÊéd
ö¦Ð:ó=¥,Ê{õhS°TÎqÄÆ!,jïZRöM{Ò\A«t5ö/Öh Äí!h¸Ï:Î)k§h¼èé¹ÿàïÇB6â¤wâÌL¨ÎR;öVZ BÎ8ߧ׼X3ÊÇà¯ô ³)D»W4±«öeù¢í¬®)=a\xê ÜéÍÅu~°pëÇER
ÏÄo~®|¸¤Xÿ 9nűsï¿|Ç÷k©w+I¸o¤!°_#S´AJæ-ïÀج©È4ËhpÓ´áÉp³y¥ü pjl(ÎÚS}³Ô*\j3÷jG(dãÛÕÆÞsËØ誡çÞß
+<Á÷,éìYï6
+fûÄömèþ|6<å}s\ä¸;* LèhÜúyí$-`)¾.Áí½^lYQm"©Ñåt_ÕBY®ÎrÜ¥ö0BÌOÿy«Ý¾Pi¾þ×ê6KÀWˤªRq8O¢Ñ¾n|y7âJ2 ïÖuÎéûÚÛÍáà¯8Ám-Ç@ñcîÉÀ÷¡\ÄIT~DýRK×NQ,·Tõμ6ðÅBkuø4¤0ZRï25Eñzc¿Ó
;¢}qm1Ú%²üÐß!&×Ï_¥_v~Ùìr¦.\A¨AÞpÍeÛy¸ù
.lNÝOÊZØÛ*-LõÍ|®¥DÖÄ-¶(Na}v.¤êªèåïÅ@ݼxái¡]ruÛFHÄrÐÞÆ
+D@ò¹gû8dùÜ=.]¼ó6 ᄄw®M¸8î^¸o49i-Â}ÕÉÅçå]Éçµ»S0®æ÷=Ö Üª®ÈÍm¸lZ"ò
+ß½+²¤N²tì`A¿ìÁD¡ë8ËÖN=ï4ÂÖü¢½4§ò&E}û^S~îè:ÎõxÐ>Ôï#ÿ±ó6´ÓõÜøß9´*®¿h~ ]÷ÃþÂî©_óÙ##º!iØÅ·Æ tñ'OPÿI1Q^
endstream
endobj
78 0 obj <<
/Type /Page
-/Contents 93 0 R
-/Resources 92 0 R
+/Contents 81 0 R
+/Resources 80 0 R
/MediaBox [0 0 595.276 841.89]
-/Parent 108 0 R
-/Annots [ 79 0 R 80 0 R 81 0 R 82 0 R 83 0 R 84 0 R 85 0 R 88 0 R 89 0 R 90 0 R 91 0 R 86 0 R 87 0 R ]
+/Parent 97 0 R
+/Annots [ 79 0 R ]
>> endobj
79 0 obj <<
/Type /Annot
/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [152.427 538.62 189.926 550.481]
-/A << /S /GoTo /D (cite.chausse10) >>
->> endobj
-80 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [195.116 538.62 217.034 550.481]
-/A << /S /GoTo /D (cite.chausse10) >>
->> endobj
-81 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [335.972 382.36 372.851 395.158]
-/A << /S /GoTo /D (cite.hansen82) >>
->> endobj
-82 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [378.581 382.36 402.392 395.158]
-/A << /S /GoTo /D (cite.hansen82) >>
->> endobj
-83 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [132.862 161.637 264.442 174.435]
-/A << /S /GoTo /D (cite.hansen-heaton-yaron96) >>
->> endobj
-84 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [269.342 161.637 293.152 174.435]
-/A << /S /GoTo /D (cite.hansen-heaton-yaron96) >>
->> endobj
-85 0 obj <<
-/Type /Annot
-/Subtype /Link
/Border[0 0 0]/H/I/C[1 0 0]
-/Rect [407.382 148.087 414.105 161.835]
+/Rect [257.249 141.463 263.972 155.211]
/A << /S /GoTo /D (Hfootnote.1) >>
>> endobj
-88 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [285.857 134.538 314.805 147.336]
-/A << /S /GoTo /D (cite.owen01) >>
->> endobj
-89 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [319.931 134.538 343.742 147.336]
-/A << /S /GoTo /D (cite.owen01) >>
->> endobj
-90 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [224.405 120.989 254.848 133.787]
-/A << /S /GoTo /D (cite.smith97) >>
->> endobj
-91 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [260.362 120.989 284.172 133.787]
-/A << /S /GoTo /D (cite.smith97) >>
->> endobj
-86 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [131.403 94.522 150.01 107.474]
-/A << /S /GoTo /D (cite.hall05) >>
->> endobj
-87 0 obj <<
-/Type /Annot
-/Subtype /Link
-/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [154.662 94.522 175.053 107.474]
-/A << /S /GoTo /D (cite.hall05) >>
->> endobj
-94 0 obj <<
+82 0 obj <<
/D [78 0 R /XYZ 80 770.89 null]
>> endobj
-95 0 obj <<
+83 0 obj <<
/D [78 0 R /XYZ 81 733.028 null]
>> endobj
2 0 obj <<
-/D [78 0 R /XYZ 81 437.442 null]
+/D [78 0 R /XYZ 81 428.751 null]
>> endobj
-103 0 obj <<
-/D [78 0 R /XYZ 81 437.442 null]
+91 0 obj <<
+/D [78 0 R /XYZ 81 428.751 null]
>> endobj
-106 0 obj <<
+94 0 obj <<
/D [78 0 R /XYZ 97.575 109.765 null]
>> endobj
-92 0 obj <<
-/Font << /F60 96 0 R /F65 97 0 R /F72 98 0 R /F8 99 0 R /F79 100 0 R /F80 101 0 R /F81 102 0 R /F20 104 0 R /F21 105 0 R /F50 107 0 R >>
+80 0 obj <<
+/Font << /F61 84 0 R /F66 85 0 R /F73 86 0 R /F8 87 0 R /F80 88 0 R /F81 89 0 R /F82 90 0 R /F20 92 0 R /F21 93 0 R /F50 95 0 R /F104 96 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
-135 0 obj <<
-/Length 3989
+100 0 obj <<
+/Length 3993
/Filter /FlateDecode
>>
stream
-xÚÍMÛ¶õî_±GíÅHÍôàt'¦ÝÉ!ɸZ5¸%oì_ß÷ ´»M.ÌF ð <¼ï÷ ç7üæí«¯Þ¿úâwSäY·ÅÍû»WÜ4Uµ¦ºy¿¾ùiQÞþòþï cb ¢n³Ú4°Á¼½-ß»4¦\tøXcÛPÿ×ð÷þ|ÜBû÷üý.ý*Tfx,u¥©2W×¼Ó;=Àìª]ÜA³;Âÿ^Ãwmeábâû7¼ç9eChUÍâ¾qDu8qça»Õ-á^`iÕÛ´Èð ]çîÎg*Ýâ¯9Ü1°§ ´»¬ÆÀÔ|Ä.qß+ÜâÄì
¢~@hÚhô[&«lËTëî¤ÄÐÆ
-{wLûÚ_o«zÑmzfßVÕ;a~>a~Qgy¼ßì÷ÃMV֥³ÂtØÓÓRt)"8ÈÛáÈë6íD<]V´.üCbkhÖµx¼÷'βîF#ØHºTÎkä½`ÚG"d;²0XJ`A#¥-AÞ¬iÆáÍø öð÷pbF+JKëòÅÃQiP/ú£¨ÈVð@ )üU²MëÕû7=~ÐÔ±ý,HÕý¬x¤mQp
-ýùMØññ¼Æà"?çU#¤ÏÿB 3Èa@?òÇ£gï.%ý(§ì>ìTHUé¬-TÊ-½V÷ük®RVîcDKßyTDH¿3±8ð_VÝÑðpó·¯n~Z6M¾øgïÿÄØöbã²pËÅfâ0é©õEçv6u!䤧O¢|sÐ
-;BSðýø°B¤ª$RçÄ ':ÜNôwiòä
aÍ}dt{9îç¤DýÛvän¤Ã¸b5ÁaR½©µ8zMA ÊnU[,¾;ð]¬K«³hxwDѵìÄf\w¿W!ƽî$gâ ){;=q³ÃAÇDM øãbáÆÏ~¦§Þ\»ª*BªªÓuÛî½àL²Î»Phv+º¯¶jæØOOÆâuX²¸ÍëŸ'{µce
®IÒx<V~øô4Ä2sFÏ;¼½5ìxG´¦öÓeH¥ÏÛ[Àkß&4_dN5DßÜ:Ë6Æ#ËìiãmKx'AÁÄ£êOÍܸ)XHSL>?àYI°ê|±<F>PXCÞÍq 3ÊôILv¹:Eç=ÊÆvP"Ò0F¼®ñ(V½Ô
ûud·¤¤£ öNF¡¤JÅx8Øö缨xÛkxôG¶j0³bûp&ùîü1[ÔÎÑá8Çâ
¿³léSÈÃ!¸|̪¶åý¶:jvüóñ¶ªØi½;ìÒöB>·,a¿ëåÝ?cdë`ôÿÖxn¬åíÄ"âج±[V<väøD"áïÅ8)Xv-²Mç Å,+Âe$»¼îNº¶[óƽÐÉívò
â.$kã½JÈ#.Uà:||zÚá"Ü[dÎfÃ"þ!jþ8w¹þ"ë.lµ9{1Xk8®Å:â
²â`¡ÛËü'+3Õc£ê;>JèyÖ¾æ
-ÕÅÃØï;í!i`\RFÍy VGò;ÿF¸ãµlÉ~÷#¯í3oCÜi-s¾nñ_ùX»Ì=®]rHÀÞ}NÄy*àØÑÉ Yjú£ON`æÄ`ÏdË
--ÚKà¯ÁC^8L¶eÛÇ'u9¦1áÙØû½¨an~'¨²Àp§aòïÙóè¾[sR³´õ|EN¿;«Ý@ï0
-ØÈ gÈÃpÊxG8bÓXõ6,µ'MÇ=8àO mvmYôh¨¨uxèÈõ¹ÚZX½ÂUµ[¼×´7ÔþFrÆ#d1ȹG }ènç1
v½©u{]èbµdBtÉ-È®ßn«¢jª(!ÄvÒ' Î!ìð;H
-C6P?À£4ä¿!4þª'äÂÁ[_ÚæÈÍÈÈÈ>ãpÄVýëToÚ*Ëó§Sü"+J!
-1Ù´ãTB¸¬pvâ"£,ûúÄ©þ·3w1î'¥jO4;&|-"§eÿïï5ÆRJm-¤¸ºPdÕƹ
£Ù&Ü«Ú¹TXLSÞXC´#sI×µµõîôS,cÇ[±|´æ<X·bóiQYd+iyøWåpt7UÍïëGÛT*ä9H#ñ÷¿èCw`¹,¯ùÔÈG´Ad ¼8wê£6¡x8ÌëtTHÐX§h~}©©jÒH0ðÊ®+_£=¹¬)¦§kýWSza
- ÙÆy¿=Zĸ
-6½LúàkOD î]°ûÒC'[Ík" í/«Ô4W"4dÚßhWdë}&Æ©dÅ+$pç=LüÏ8÷ì5
-.ÍD£ pl>ê qäe%ð<YÕíwÙÿ.¹Ø+m>·+M*·}ðúï±&ÀîÉ
-ÉÞHyAX'rÃÙ×+J{|^ÓØNùäN¢mÁï$óKÙV3Ó¨ZçÉw¼ûA°ã\'&Új"R)òÛcP'$k#`áùJLuµÈÒû0v¹ws÷ÁÐöù[5>dIð"«¦BætµæGöÆrU/*t¤xQyVWÞmi^¹éCËPº®¬
-ghýÒL7^R£F$÷¿^Àÿ¼t@Ò;úJ·C¼^·=ø[!i«ésw¡ UÞªó§ES)3ßÎ]NÙ㥩Rdí WjkCs¤´\jÊ:Îx©#
-ÝaXQ¬ªgÂ0pZ
-ÁÙê} $:.B :
-ÝÚí5ÕßrÝXðë ¶7YáÑÙ]aiQK ný§W¥ ¤À¢xaEh"ïC¸3 -7;ÌEYØ)(M·µÒÈ6;
-ãc·ÖÄÊG_ó
-¥!Üíj¹v(Eå¶
-n.×&&^²./t×iϸ³YÙJÕÊÚX8°½uãËúÓYn)g®ßÔÏDê !Íâ¡ó©}kÕlº©½ÞZÉÀïÝ0ƹRÜ6wýÌyÐ/ÌôS-Uã:w]py~ÅËøÈV¡BS©r>_ÑðúRb¶®Ùk´kë&V`ø®À|Ô¸ðH8AÅ£Q½näµô¯là u% þÂÚ¨¾Ö q5̾#¥{ôGD6Pz×Óõgº78kÙ90¯ÛÍ®ÿñàòZâÊ
-z|ØÌÏE·ìßÈûmå÷ÁvH0æÀ¿koUFºÁ0>{1ñ¢ Ç0üsÅÉkðêù<¸Ù y2
£Ém|¡&ÕJÉizkÝ=±S2àÙߨäáå®zqT\§¤bW5£Å s,ÿð%ßôiÆÈó}`z½n¶\§Kg®>ÁëUe´>ÕM_TLù*¯ø*®Y{úÕØÂ/¾©ADmf,"MWYµO>¸&_¼%9è:òϾ¸Té³ôþ¹ö6ÅrW·Fó§?ºyi2ÛÖqV+!éxiJ¡÷ Z*º&:/¤Èø(ÃwüËuOÊ»ð¹WªGu´D5}wb]?UÌCô¬Gw¸y¯¥ô$q2Sk_®;ÝúWË/¤d%lILO.½K½ÂJ±Êf!ÔºbÃÀÎåOW¯`OÊã#fÔt©ñ¸ÇbÐj#Ly¢c;TµsÁ¤Ì¢eNÖmÌô@JWdÖ¼ÄVU¾Wl)ÝÓJVÏruÊþb´X0÷Ï\DÁrßvÑgÀk'|AU£h]~èÃ8^Lr¸¼ÍJãW/q5½º^à$ßü᫱ƥ/:O[_?Ïèô]2å¡à:«jû¨¬vwß?M°è Ød+eHhüxëfÚsþÁðËÎ{åýnôrvñÌIåãxÆŨ-®£áÉ^T_VTQg«©B|C
üEõL üS£V±
-+%kÏlå·!=ùlbB
-cþS®¤?¢eXK Z^Ó0&ÒÖñ»0Uã4õ²:®ÇKt¶,§9^Ù2R¼R^ýù
-øÿ&'¨*+J4YmÄ'çUMêpYÞBGµÕjèV ÏÛ5[EÑ]:6+\ª üÅ"Bè´ùf¿ãüF"äá½>ê¹=OãÈoRä$«Àiþ"NÕ®tÎËôÖ(5/8r»d5öjwÖ·4©§*&î}Q×Õw:IKB®¤°¬iå_'àྫྷúSj%åQIár
*«Újîæج´åÙÙR1±Ì~y*ÛY¹KÜÜÉÛT-33è_PÝâ¯üD
| 'Î)ùh¬*§ä+äl.-¬;ánûcÈHg)!ÙôÄL»¯^ñ©ë§nÀs¶7 ¹R4üä))ÉN$ÙDRy^-)ÈÚI¿ ؽæ¢7½¼æìñÓ~oJS¹î=¨g¢W£V^^¼Jîa0ÜqárÕHIk)į2WÕ "Ô¹07D[-YÇZ éW²?òPx¿Xij ôÅïsq<L½¼y¿ÚB»~^)½YçÒ¸è^pÖ&ä<&¼n at tOÑ´ê²Õ«éO?Ù«&tÓf®UÙÿ¯Ì×O6<¢ZÿYÃÓ ¯`+2C^wÒæÉø«ìýÄqò< ùGjk5u¾^É£OtAÑ~ÏW»ã'^¹#Ý?û-'¨8qÜ´°¹ge0ýýúý«ÿå8v|
+xÚÍË#·ñ¾_1G
+0j7É~Æ;ðnxÀÞ Û©õH$µV-y<ûõ©'Énµf&ÈűÉb¬w¹éÝú.½ûðîÛOï¾z_Ý4©ÓÚÜ}ZÝUæ®ÌˤvùݧåÝÏ3{ÿ맿L¢N
+W
+ùpof?Þϳ³æ Kl;êÿþýÀO[háß¿DÔïRÙÊhs]cîò¤*
+^©[ÁÔÊÌ>|Ä%¹ÝÜ`ôÔ|º·å¬éñÃÎpGÝ9Àðgÿ.KøÓF³<Î`«Ù3÷÷¸ãÿ D¯E³ãñ#/p½ÿÜçŬY·äBø ÍØ M|FgÄÁÑëý^ b [&eía¢[@ýö´r¢îx?Ï%oc
½'Á8]'UjñKÏ3çºÈ.ɳZ¶°QàÊaû®Ç
±ÈÚ¹0H*'¸Ì`öµ n ö¢eÉ«Ó?ÃØþÏÌWÝÌÜe¸q⤠øÑ3ÉQfäfäB{ÝâG¤ëöJ
+"ýq++a¡tüßê×ÇÉ/i©Èðadtrn:$ðã ã.ì¢{E"}DHXÜÍÊ96Ï<m@·èHOö(éI¨z³'ÊyÈ¥¯Þn` ª2Is/\.hfe¥Bü T6M-_Åä!P:$(`AG#U= '=ðI}H¯àÕTOL«eð(a\+æÖVs¢2bCI(I"&H\,¹g&}LÉJ¶'§ Ö@çîûQdÊ7&
+§ô,c,,Ø¡ç6
ï6 Gçáù ãQG;C «k4R`;P,-¬*¯ã^ ((À({ºîTp5ðìMÙFs³á^èGÞöÚYÃÆ :Ù*=\!ê÷jv-Ë ö1OUÊà@L½ýy£K¦ÓçåVjÂö²Ï»¡è8xjsZ°Eç¸õö<àÀR
Îå³÷÷UF¤r£ê½ïNb/FÎæ`V]¯.Ö8åW`x¯`<<
+|/ý¦ZYà@l¦¹´Ï.4#pô!÷{ÙãßÇà`V2WàwßÄSS*G°y[²=Îg?aíå ñ)á³ý%5o3´0Èjæ¶8<¶Pf=©R"¤B~Ï·Ï2±qê駳oRÂ~$n}Q±ü6,¿QC»9º17Ü/S h$tÅìobª©pRa¦½_4x YôY¶5e%$0¼BEvô¬Ç2Hâ¸Äír+4¡ä{2ÍÛhCpM·í+mM¦wߨ±¾¡]+lTHdò#qÊC2òÌÚ:@6@ ñýbóï-[íõ·sPÓ÷ü%lò
+çxÙå=¨¯tà+«Qx)n%aÓ5 ²Aì)¯^rúýØù°»eÈ¿va*îaKv}kPUsW1
ÅG2Z½u³f[
+ýFoÙfé/A,'t¥Ä½¥8ßwk
+ÄÛ .YÃÛßYÀãλñ³Øþ%O'F¯;uódn÷âÛ8X )6}«¢:ðàF"LÝ7KAÓÙ·4ï-Z¶ü^s~ÀØé×ûRr¤õ¨4:Í!ð¶Ï¡Ýïzft*uÉë{ÛǼ° W[@óipöd â,bÇ$ú\ÔxÔúBgù§nvDÌÔ=b¶Wi¿0H«ªë,;Àûuur«¹/
Î JY76¶j{OOt&_¼ìñ^ÐÃÇ3·}D m>ÓI5Ð|;D'9>-Üóoäkd÷Rv²hÕڳ߽~Î+¢V«ÙWwd%¹läéàß
+3CM$u,8MZª ×çBá!K)[áL¸â
+}òqϸ® f5MËWË
+UafºQIÔë]QϽ*Uä"²4µÙc=ÐÒÌEyè5¸[¾MFmÒ'é¥À96m at jAnÚ8I'bæ)}äu¢Ä=TS¶iCò¤b4PßEÒ!:>°0ÚÒ»=J<dEÚ 2 S) £Ñh¥!/UwêÖÜÈËÁVÍkMì¡#Ã"\r$¢ÆÏC"â|
+$/#N%f¯ÖDÖÕáÔZC@ãàIG9i²KI$Ly[%}ÎõE2>Fñh×G
+¨ê*)LõZ@) ¦å@°oHÌ;Þ*håð¶ûúa䫧î;d9PÞ^;A{K s4+G?Ïö9ÿ¶mB£ÓTW~çN ú}ÄoÎ;H6ã¤\_¦³öÑéqÃÄèãkj<@ásÄ,î= TÂ'Zc1/XöîÓO)cX%ye#vf{lÉnmÉ9àæÉûÄb7<3Àd@Þüù¢2.Â#è³aÎ{L"[?võ×2Ûû Î /~XöI#õ·WÒìcJèL8÷iCöM<â3Iå³
+MÖöÁ{à«À*{§ÕMc6Y^(ßË!ÿñ3e^ÅÅ?C0Y4{7êßL5TÐ=þùÒ\É| îHÃ=Ä2sQØs¯©}ÞÜönK
ÐÛD¹M27*É#Û3õ"C(ñvD
Á©2ÌKØô,"OîµWwé(_þÈ-m¹ÉàA&YíòÄñ±»ÁGÇW(yÍþ-Q:¶µ)SßV¤þª¨HIxB9»ÙÙsC 2í_µP£`Ñkö¨LfSlõ¤ËåxÏ
+ÛÁ@«·l5©`quK+ à+2o¿Ö¢m.MÊ`éâªû§5 ×NkÆÝ-æ64LÎäªðQoÜàÞÛ@{l©|ºáõÍ£>«"ðpx³_¥ o©{a"öus 5÷FCü]uãð³=Èòç×ã˺|CÛkìL>¹&_`ÔÀûjÜSÅ^bÑGÔQݵγBj}fEI³`³×Ö§}'ÚôQÕ
zÆ%å0lÊ-D§a! fÞJ¬Ô2É¥O
+ÑzÃã¢!-m¡ecðB5|#Ñ<î5áÅ4øàb'S1bW×æ\¬JÒâv*&>+¿G/âm¨A-FÂ¥7$S
£âu;Zøzp-³Òg(4±®eyæf/LK«Q¿ p¯þÃδÞÔ$^c2àEãzüÐ+b½:)â±rù1$E's2þá(`¡u¥_I]ë9öæ¸Þú ¿EòÐJ!î";jòGoÄV)D¹ÐnF¸&z1_½qËÀKðÕÊTO8|ôQ飻 1hOæÄ_Ôj¹0wC?ÚG»))53IE=tqp`Y]DÆY0¸ßþÚBï64'TT:/¤Î÷$Ã+þÅ>£²*~NÕiÑÙlöýA¢ínãwtû³Ô0NV긹Ñúõqrqx5!;®äj^uVÉm.±ÝõmäV:¼#®ýæ
+Ë!ýt¯00séËå$Xs Z¾ÄàÛïÂg~iTBÛÇJiê˲8IL½lnWlc'Ä°À@m^u\îÑ¢\:|F£à3:Ð+Sú í}@±
+nbü^¼Vq0P¿á½,Ï^Ã3q9ë-¤½ÖÈVçIó$nïpÉ`pË¡'WVÊ"±e>ª¬®ãÐAñd'¿M>MÅÙ¤Qõ«
%a!7¦"
+aÿ
Z#nÓ<½ÂÖ²BÇO
+dZÃ?lÕRE7þÍLÃÅW©ÓÆ2ªN2ë9úKjåí MïÀ·@RÌç3ÕÞö`*Py¬NÒ:àrÙó
ËF«uÑreRõKê¼VÓtMó:1U
+ ü½BètU_Éé=CÓkð5¨éHAg"wXOxN¹Êâç)âIQΩ½ª§£kVc¯ÊûEíEo¼×Ðd\þsöö{?MÓ.Á¸ü²S~7q ù¨þ<
É%iðJª×y SN!É2ç×e¶ÊìUéÜ]õõ=¨l 1ëµ\ä¦àÜNž8 áC©_Q«Ùùgr+¶³æóõ|`5í<ffüC¬y8Òjȧ'ÿB¨d
<ÆsêØ`m]þê©KÈê»Ü9ªlU\$W
+uô8cÎïÝ?Ýu¤Êdp¥»å°ðpüåo+ëWât§AËuÆ#T ¸÷J0.´l¸IÓw°s!~Ty14K¾* ÑiRßxcµØ~òV 硾/C<¸ÓáËQ:ZüçÜ,ò?L
+`A»xbÙ)Åç <!ÓÝwÜ%î"$C8 ýö³dsÒ]òÅ:i¥Ë:©Ì¨¾÷²_sв<Å´å)õ:ò/[rÚòÀ+y ·ýeün"úÕP±x[ñõ$Aò$ÀRn¥®Þw´ò(à'}CÖë|2ÔsCÊñïÄãì'v²7Í5×ÖVÖ>Ì
+FÄÃwíe<P3¥03åk¼ÍÞÂ[÷?ó¶|oí·|)Éå¿<ëÇo¾Íä>K¹ð¨ªW}áU^-< .¢ÂEPR:7%úÒúÜcà#-CzÕÍJÿg{5xÛÌ
+êR4·ßºc0wTr»Á_ð®*ÿGwåÞéuYé+]ö(ÆÊ30ØøIéÚ?0âuDJþqX©
+è3ì{Ôô+&y>~ÇpOþ±ªqþ>EÒð
ÅÙÿg»9d¼iêng^Û}¨fùíl[.ÄÿqH¿ûôî¿fµ
endstream
endobj
-134 0 obj <<
+99 0 obj <<
/Type /Page
-/Contents 135 0 R
-/Resources 133 0 R
+/Contents 100 0 R
+/Resources 98 0 R
/MediaBox [0 0 595.276 841.89]
-/Parent 108 0 R
-/Annots [ 115 0 R 116 0 R 117 0 R 118 0 R 119 0 R 120 0 R 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 128 0 R 129 0 R 130 0 R 131 0 R 132 0 R ]
+/Parent 97 0 R
>> endobj
-115 0 obj <<
-/Type /Annot
-/Subtype /Link
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/gmm -r 49
More information about the Gmm-commits
mailing list