[GenABEL-dev] [Genabel-commits] r1671 - in branches/ProbABEL-0.50: examples src

Maarten Kooyman kooyman at gmail.com
Mon Apr 7 19:51:54 CEST 2014


Hi Lennart,

On 07-04-14 09:06, L.C. Karssen wrote:
> Hi Maarten,
>
> On 02-04-14 22:25, noreply at r-forge.r-project.org wrote:
>> Author: maartenk
>> Date: 2014-04-02 22:25:43 +0200 (Wed, 02 Apr 2014)
>>
> Thanks :-).
>>   
>>
>> Modified: branches/ProbABEL-0.50/src/probabel
>> ===================================================================
>> --- branches/ProbABEL-0.50/src/probabel	2014-04-02 15:57:31 UTC (rev 1670)
>> +++ branches/ProbABEL-0.50/src/probabel	2014-04-02 20:25:43 UTC (rev 1671)
>> @@ -169,6 +169,11 @@
>>   
>>   
>>   my $phename = $ARGV[5];
>> +if (! -e $phename.".PHE"){
>> +die "Phenotype file $phename.PHE does not exists. The phenotype file should be specified without the .PHE extension.\n";
>> +}
>> +
>> +
>>   # By default the output file prefix is the same as the name of the
>>   # phenotype file (minus the .PHE extension and any paths)
>>   use File::Basename;
>>
>> Modified: branches/ProbABEL-0.50/src/reg1.cpp
>> ===================================================================
>> --- branches/ProbABEL-0.50/src/reg1.cpp	2014-04-02 15:57:31 UTC (rev 1670)
>> +++ branches/ProbABEL-0.50/src/reg1.cpp	2014-04-02 20:25:43 UTC (rev 1671)
>> @@ -313,35 +313,21 @@
>>   void linear_reg::mmscore_regression(const mematrix<double>& X,
>>           const masked_matrix& W_masked, LDLT<MatrixXd>& Ch) {
>>   
>> -
>>       VectorXd Y = reg_data.Y.data.col(0);
>> -    if (X.data.cols() == 3)
>> -    {
>> -        Matrix<double, Dynamic, 3> tXW = W_masked.masked_data->data * X.data;
>> -        Matrix2d xWx = tXW.transpose() * X.data;
>> -        Ch = LDLT<MatrixXd>(xWx);
>> -        Vector3d beta_3f = Ch.solve(tXW.transpose() * Y);
>> -        sigma2 = (Y - tXW * beta_3f).squaredNorm();
>> -        beta.data = beta_3f;
>> -    }
>> -    else if (X.data.cols() == 2)
>> -    {
>> -        Matrix<double,  Dynamic,2> tXW =  W_masked.masked_data->data*X.data;
>> -        Matrix2d xWx = tXW.transpose() * X.data;
>> -        Ch = LDLT<MatrixXd> (xWx);
>> -        Vector2d beta_2f = Ch.solve(tXW.transpose() * Y);
>> -        sigma2 = (Y - tXW * beta_2f).squaredNorm();
>> -        beta.data = beta_2f;
>> -    }
>> -    else
>> -    {
>> -        // next line is  5997000 flops
>> -        MatrixXd tXW = X.data.transpose() * W_masked.masked_data->data;
>> -        Ch = LDLT<MatrixXd>(tXW * X.data); // 17991 flops
>> -        beta.data = Ch.solve(tXW * Y); //5997 flops
>> -        //next line is: 1000+5000+3000= 9000 flops
>> -        sigma2 = (Y - tXW.transpose() * beta.data).squaredNorm();
>> -    }
> Glad to see the if/else go! This is much cleaner (and apparently not
> slower).
>
>
>> +    /*
>> +     in ProbABEL <0.50 this calculation was performed like t(X)*W
>> +     This changed to W*X since this is better vectorized since the left hand
>> +     side has more rows: this introduces an additional transpose, but can be
>> +     neglected compared to the speedup this brings(about a factor 2 for the
>> +     palinear with 1 predictor)
>> +     */
>> +    MatrixXd tXW = W_masked.masked_data->data * X.data;
> I think the variable naming should be more apropriate here: tXW sounds
> like X^t * W, but you store W * X in that variable.
Yepp, your right it should be called tWX. We skip the transpose of W 
since it is a symmetric matrix: however in terms of mathematics it makes 
sense to call what we achieve. You can read in the code what we do.  
This might need some explanation in form of comments.
>
>> +    MatrixXd xWx = tXW.transpose() * X.data;
> Similarly here, I'm not sure how to interpret xWx. Since you calculate
> (W*X)^t * X a name like WXtX seems more reasonable.

So this will be something like ttWXX ??? Any other good solution?
>> +    Ch = LDLT<MatrixXd>(xWx);
>> +    VectorXd beta_vec = Ch.solve(tXW.transpose() * Y);
>> +    sigma2 = (Y - tXW * beta_vec).squaredNorm();
>> +    beta.data = beta_vec;
>> +
>>   }
> Thanks for the good work!
>
> Lennart.
>
>>   
>>   void linear_reg::logLikelihood(const mematrix<double>& X) {
>>



More information about the genabel-devel mailing list