[Genabel-commits] r2062 - pkg/MultiABEL/R

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jan 24 12:07:04 CET 2017


Author: nd_0001
Date: 2017-01-24 12:07:03 +0100 (Tue, 24 Jan 2017)
New Revision: 2062

Modified:
   pkg/MultiABEL/R/load.summary.R
Log:
changes in load.summary

Modified: pkg/MultiABEL/R/load.summary.R
===================================================================
--- pkg/MultiABEL/R/load.summary.R	2016-12-24 10:54:02 UTC (rev 2061)
+++ pkg/MultiABEL/R/load.summary.R	2017-01-24 11:07:03 UTC (rev 2062)
@@ -1,219 +1,219 @@
-#' Loading multiple summary statistics from genome-wide association studies 
-#' 
-#' The function loads multiple meta-GWAS summary statistics, for subsequent multi-trait GWAS. 
-#' Currently, the package only analyzes summary statistics from inverse-Gaussianized continuous traits.
-#' 
-#' @param files A vector of file names as strings. Each file name should contain summary statistics of
-#' one trait to be included in the multi-trait analysis. The columns of the summary statistics have to
-#' contain (uppercase or lowercase does not matter) \code{'snp'} (marker ID), \code{'a1'} (the first allele), \code{'freq'} 
-#' (frequency of the first allele), \code{'beta'} (effect size), \code{'se'} (standard error), and 
-#' \code{'n'} (sample size).
-#' @param cor.pheno A #traits x #traits matrix of correlation matrix of the phenotypes, to be used to 
-#' construct the multi-trait test statistic. If \code{NULL},
-#' this matrix will be estimated from genome-wide summary statistics. If you have partially overlapping 
-#' samples for different traits, shrinkage correlation matrix is recommended (see reference), so in that
-#' case, unless you know what you are doing, leave this argument as default, i.e. \code{NULL}.
-#' @param indep.snps A vector of strings containing the names of a set of independent SNPs. This is 
-#' recommended to be generated by LD-pruning the genotype data in a certain cohort. Typically the 
-#' number of SNPs should be more than 10,000 in order to obtain a good estimate of \code{cor.pheno}. If
-#' \code{cor.pheno = NULL}, this argument cannot be \code{NULL}.
-#' @param est.var A logical value. If \code{FALSE}, each phenotypic variance is assumed to be known as 1. 
-#' If \code{TRUE}, each phenotypic variance will be estimated to adjust the summary statistics, so that
-#' the corresponding phenoypic variance is 1.
-#' @param columnNames A vector with names of columns containing necessary information in the input file;
-#' default values are c('snp','a1','freq','beta','se','n'). The values are case-insensitive. Note: check
-#' your allele definitions for different traits are based on the same strand!
-#' @param fixedN sample size to assume across all analyses, when provided, this number will be used
-#' (instead of the ones specified in the input files)
-#' 
-#' @return The function returns a list of class \code{multi.summary}, containing two elements: \code{gwa}
-#' (the cleaned data to be processed in multi-trait GWAS), \code{cor.pheno} (user input or estimated), and 
-#' \code{var.pheno} (default or estimated).
-#' 
-#' @author Xia Shen, Yurii S. Aulchenko
-#' 
-#' @references 
-#' Xia Shen, Zheng Ning, Yakov Tsepilov, Masoud Shirali, 
-#' Generation Scotland, Blair H. Smith, Lynne J. Hocking, Sandosh Padmanabhan, Caroline Hayward, 
-#' David J. Porteous, Yudi Pawitan, Chris S. Haley, Yurii S. Aulchenko (2015).
-#' Simple multi-trait analysis identifies novel loci 
-#' associated with growth and obesity measures. \emph{Submitted}.
-#' 
-#' @seealso 
-#' \code{MultiSummary}
-#' 
-#' @examples 
-#' \dontrun{
-#' ## download the six example files from:
-#' ## https://www.dropbox.com/sh/hhta45cewvvea2s/AADfj4OXlbroToZAwIii2Buha?dl=0
-#' ## the summary statistics from Randall et al. (2013) PLoS Genet
-#' ## for males only
-#' ## bmi: body mass index
-#' ## hip: hip circumference
-#' ## wc: waist circumference
-#' ## whr: waist-hip ratio
-#' 
-#' ## load the prepared set of independent SNPs
-#' indep.snps <- as.character(read.table('indep.snps')$V1)
-#' 
-#' ## load summary statistics of the six traits
-#' stats.male <- load.summary(files = list.files(pattern = '*.txt'), indep.snps = indep.snps)
-#' 
-#' ## perform multi-trait meta-GWAS
-#' result <- MultiSummary(stats.male)
-#' head(result)
-#' }
-#' @aliases load.summary
-#' @keywords multivariate, meta-analysis
-#' 
-`load.summary` <- function(files, cor.pheno = NULL, indep.snps = NULL, est.var = FALSE, 
-		                   columnNames = c('snp', 'a1', 'freq', 'beta', 'se', 'n'), fixedN = NULL) {
-	if (!all(is.character(files))) {
-		stop('files should be given as strings!')
-	}
-	if (sum(file.exists(files)) < 2) {
-		stop('number of traits has to be more than 2!')
-	}
-	if (is.null(cor.pheno) & is.null(indep.snps)) {
-		stop('indep.snps required for estimating cor.pheno!')
-	}
-	m <- length(files)
-	if (!is.null(cor.pheno)) {
-		if (nrow(cor.pheno) != m | ncol(cor.pheno) != m) {
-			stop('wrong dimensions of cor.pheno!')
-		}
-	}
-	columnNames <- tolower(columnNames)
-	if (!is.null(fixedN)) if (fixedN <= 0) {
-			stop('fixedN should be a positive number')
-		}
-	if (is.null(fixedN)) { colNamLen = 6 } else { colNamLen = 5 }
-	if (!is.character(columnNames)) {
-		stop('columnNames should be character')
-	}
-	if (length(columnNames) != colNamLen) {
-		cat('columnNames should be a vector with',colNamLen,'elements')
-		stop('... exiting')
-	}
-	if (length(unique(columnNames)) != colNamLen) {
-		stop('elements of columnNames must be unique')
-	}
-	# column Names Translation
-	cNT = list(
-		'snp' = columnNames[1],
-		'a1'  = columnNames[2],
-		'freq'= columnNames[3],
-		'beta'= columnNames[4],
-		'se'  = columnNames[5],
-		'n'   = columnNames[6]
-	)
-	cat('loading data ...\n')
-	data <- c()
-	fn <- files # rev(files)
-	vys <- rep(1, m)
-	for (i in m:1) {
-		dd <- read.table(fn[i], header = TRUE, stringsAsFactors = FALSE)
-		colnames(dd) <- tolower(colnames(dd))
-		currentColNames <- colnames(dd)
-		if (any(!(columnNames %in% currentColNames))) {
-			stop('file column names do not match columnNames in ', fn[i], '... exiting!')
-		}
-		idx <- which(duplicated(dd[, cNT$snp]))
-		if (length(idx) > 0) {
-			data[[i]] <- dd[-idx,]
-			rownames(data[[i]]) <- dd[ -idx , cNT$snp]
-		} else {
-			data[[i]] <- dd
-			rownames(data[[i]]) <- dd[, cNT$snp]
-		}
-		if (est.var) {
-			if (is.null(fixedN)) {
-				D <-  dd[,cNT$n]*2*dd[, cNT$freq]*(1 - dd[, cNT$freq])
-				vy <- D*dd[ , cNT$se]**2 + D*dd[, cNT$beta]**2/(dd[, cNT$n] - 1)
-			} else {
-				D <-  fixedN*2*dd[, cNT$freq]*(1 - dd[, cNT$freq])
-				vy <- D*dd[ , cNT$se]**2 + D*dd[, cNT$beta]**2/(fixedN - 1)
-			}
-			dvy <- density(na.omit(vy))
-			vys[i] <- dvy$x[which.max(dvy$y)] #median(vy, na.rm = TRUE)
-		}
-		progress((m - i + 1)/m*100)
-	}
-	cat('\n')
-	if (est.var) cat('phenotypic variances are:', vys, '\n')
-	cat('checking markers ...\n')
-	snps <- data[[1]][, cNT$snp]
-	for (i in 2:m) {
-		snps <- data[[i]][ data[[i]][, cNT$snp] %in% snps, cNT$snp]
-		progress(i/m*100)
-	}
-	snps <- unique(snps)
-	cat('\n')
-	cat('cleaning data ...\n')
-	for (i in 1:m) {
-		data[[i]] <- data[[i]][snps,]
-		progress(i/m*100)
-	}
-	cat('\n')
-	cat('correcting parameters ...\n')
-	for (i in 2:m) {
-		if (any(data[[i]][, cNT[['a1']]] != data[[1]][, cNT[['a1']]])) {
-			adj <- 2*as.numeric(data[[i]][, cNT[['a1']]] == data[[1]][, cNT[['a1']]]) - 1
-			data[[i]][, cNT$beta] <- data[[i]][, cNT$beta]*adj
-			data[[i]][, cNT$freq] <- (adj == 1)*data[[i]][, cNT$freq] + (adj == -1)*(1 - data[[i]][,cNT$freq])
-		}
-		progress(i/m*100)
-	}
-	cat('\n')
-	cat('adjusting sample size ... ')
-	n0 <- matrix(NA, nrow(data[[1]]), m)
-	if (is.null(fixedN)) {
-		for (i in 1:m) {
-			n0[,i] <- data[[i]][,cNT$n]
-		}
-	} else {
-		for (i in 1:m) {
-			n0[,i] <- fixedN
-		}            
-	}
-	n <- apply(n0, 1, "min")
-	cat('done.\n')
-	cat('finalizing summary statistics ...\n')
-	gwa0 <- matrix(NA, nrow(data[[1]]), 2*m + 2)
-	for (i in 1:m) {
-		gwa0[,i*2 - 1] <- data[[i]][,cNT$beta]
-		gwa0[,i*2] <- data[[i]][,cNT$se]
-		progress(i/m*100)
-	}
-	gwa0[,2*length(data) + 1] <- data[[1]][,cNT$freq]
-	gwa0[,2*length(data) + 2] <- n
-	rownames(gwa0) <- data[[1]][,cNT$snp]
-	gwa0 <- na.omit(gwa0)
-	cat('\n')
-	if (is.null(cor.pheno)) {
-		n.ratio <- diag(m)
-		for (i in 1:(m - 1)) {
-			for (j in (i + 1):m) {
-				ratio <- mean(sqrt(n0[,j]/n0[,i]), na.rm = TRUE)
-				n.ratio[i,j] <- n.ratio[j,i] <- ifelse(ratio > 1, 1/ratio, ratio)
-			}
-		}
-		if (any(n.ratio < 1)) {
-			cat('samples partially overlap!\n')
-			cat('estimating shrinkage phenotypic correlations ... ')
-		} else {
-			cat('estimating phenotypic correlations ... ')
-		}
-		idx <- which(rownames(gwa0) %in% indep.snps)
-		gwa1 <- gwa0[idx,]
-		z <- gwa1[,seq(1, 2*m, 2)]/gwa1[,seq(2, 2*m, 2)]
-		cor.pheno <- cor(z, use = 'pairwise.complete.obs')
-		cat('done.\n')
-	}
-	dimnames(cor.pheno) <- list(files, files)
-	gwanames <- c(paste(rep(files, each = 2), rep(c('.beta', '.se'), m), sep = ''), 'f', 'n')
-	colnames(gwa0) <- gwanames
-	dd <- list(gwa = gwa0, cor.pheno = cor.pheno, var.pheno = vys)
-	class(dd) <- 'multi.summary'
-	return(dd)
-}
+#' Loading multiple summary statistics from genome-wide association studies 
+#' 
+#' The function loads multiple meta-GWAS summary statistics, for subsequent multi-trait GWAS. 
+#' Currently, the package only analyzes summary statistics from inverse-Gaussianized continuous traits.
+#' 
+#' @param files A vector of file names as strings. Each file name should contain summary statistics of
+#' one trait to be included in the multi-trait analysis. The columns of the summary statistics have to
+#' contain (uppercase or lowercase does not matter) \code{'snp'} (marker ID), \code{'a1'} (the first allele), \code{'freq'} 
+#' (frequency of the first allele), \code{'beta'} (effect size), \code{'se'} (standard error), and 
+#' \code{'n'} (sample size).
+#' @param cor.pheno A #traits x #traits matrix of correlation matrix of the phenotypes, to be used to 
+#' construct the multi-trait test statistic. If \code{NULL},
+#' this matrix will be estimated from genome-wide summary statistics. If you have partially overlapping 
+#' samples for different traits, shrinkage correlation matrix is recommended (see reference), so in that
+#' case, unless you know what you are doing, leave this argument as default, i.e. \code{NULL}.
+#' @param indep.snps A vector of strings containing the names of a set of independent SNPs. This is 
+#' recommended to be generated by LD-pruning the genotype data in a certain cohort. Typically the 
+#' number of SNPs should be more than 10,000 in order to obtain a good estimate of \code{cor.pheno}. If
+#' \code{cor.pheno = NULL}, this argument cannot be \code{NULL}.
+#' @param est.var A logical value. If \code{FALSE}, each phenotypic variance is assumed to be known as 1. 
+#' If \code{TRUE}, each phenotypic variance will be estimated to adjust the summary statistics, so that
+#' the corresponding phenoypic variance is 1.
+#' @param columnNames A vector with names of columns containing necessary information in the input file;
+#' default values are c('snp','a1','freq','beta','se','n'). The values are case-insensitive. Note: check
+#' your allele definitions for different traits are based on the same strand!
+#' @param fixedN sample size to assume across all analyses, when provided, this number will be used
+#' (instead of the ones specified in the input files)
+#' 
+#' @return The function returns a list of class \code{multi.summary}, containing two elements: \code{gwa}
+#' (the cleaned data to be processed in multi-trait GWAS), \code{cor.pheno} (user input or estimated), and 
+#' \code{var.pheno} (default or estimated).
+#' 
+#' @author Xia Shen, Yurii S. Aulchenko
+#' 
+#' @references 
+#' Xia Shen, Zheng Ning, Yakov Tsepilov, Masoud Shirali, 
+#' Generation Scotland, Blair H. Smith, Lynne J. Hocking, Sandosh Padmanabhan, Caroline Hayward, 
+#' David J. Porteous, Yudi Pawitan, Chris S. Haley, Yurii S. Aulchenko (2015).
+#' Simple multi-trait analysis identifies novel loci 
+#' associated with growth and obesity measures. \emph{Submitted}.
+#' 
+#' @seealso 
+#' \code{MultiSummary}
+#' 
+#' @examples 
+#' \dontrun{
+#' ## download the six example files from:
+#' ## https://www.dropbox.com/sh/hhta45cewvvea2s/AADfj4OXlbroToZAwIii2Buha?dl=0
+#' ## the summary statistics from Randall et al. (2013) PLoS Genet
+#' ## for males only
+#' ## bmi: body mass index
+#' ## hip: hip circumference
+#' ## wc: waist circumference
+#' ## whr: waist-hip ratio
+#' 
+#' ## load the prepared set of independent SNPs
+#' indep.snps <- as.character(read.table('indep.snps')$V1)
+#' 
+#' ## load summary statistics of the six traits
+#' stats.male <- load.summary(files = list.files(pattern = '*.txt'), indep.snps = indep.snps)
+#' 
+#' ## perform multi-trait meta-GWAS
+#' result <- MultiSummary(stats.male)
+#' head(result)
+#' }
+#' @aliases load.summary
+#' @keywords multivariate, meta-analysis
+#' 
+`load.summary` <- function(files, cor.pheno = NULL, indep.snps = NULL, est.var = FALSE, 
+		                   columnNames = c('snp', 'a1', 'freq', 'beta', 'se', 'n'), fixedN = NULL) {
+	if (!all(is.character(files))) {
+		stop('files should be given as strings!')
+	}
+	if (sum(file.exists(files)) < 2) {
+		stop('number of traits has to be more than 2!')
+	}
+	if (is.null(cor.pheno) & is.null(indep.snps)) {
+		stop('indep.snps required for estimating cor.pheno!')
+	}
+	m <- length(files)
+	if (!is.null(cor.pheno)) {
+		if (nrow(cor.pheno) != m | ncol(cor.pheno) != m) {
+			stop('wrong dimensions of cor.pheno!')
+		}
+	}
+	columnNames <- tolower(columnNames)
+	if (!is.null(fixedN)) if (fixedN <= 0) {
+			stop('fixedN should be a positive number')
+		}
+	if (is.null(fixedN)) { colNamLen = 6 } else { colNamLen = 5 }
+	if (!is.character(columnNames)) {
+		stop('columnNames should be character')
+	}
+	if (length(columnNames) != colNamLen) {
+		cat('columnNames should be a vector with',colNamLen,'elements')
+		stop('... exiting')
+	}
+	if (length(unique(columnNames)) != colNamLen) {
+		stop('elements of columnNames must be unique')
+	}
+	# column Names Translation
+	cNT = list(
+		'snp' = columnNames[1],
+		'a1'  = columnNames[2],
+		'freq'= columnNames[3],
+		'beta'= columnNames[4],
+		'se'  = columnNames[5],
+		'n'   = columnNames[6]
+	)
+	cat('loading data ...\n')
+	data <- c()
+	fn <- files # rev(files)
+	vys <- rep(1, m)
+	for (i in m:1) {
+		dd <- read.table(fn[i], header = TRUE, stringsAsFactors = FALSE)
+		colnames(dd) <- tolower(colnames(dd))
+		currentColNames <- colnames(dd)
+		if (any(!(columnNames %in% currentColNames))) {
+			stop('file column names do not match columnNames in ', fn[i], '... exiting!')
+		}
+		idx <- which(duplicated(dd[, cNT$snp]))
+		if (length(idx) > 0) {
+			data[[i]] <- dd[-idx,]
+			rownames(data[[i]]) <- dd[ -idx , cNT$snp]
+		} else {
+			data[[i]] <- dd
+			rownames(data[[i]]) <- dd[, cNT$snp]
+		}
+		if (est.var) {
+			if (is.null(fixedN)) {
+				D <-  dd[,cNT$n]*2*dd[, cNT$freq]*(1 - dd[, cNT$freq])
+				vy <- D*dd[ , cNT$se]**2 + D*dd[, cNT$beta]**2/(dd[, cNT$n] - 1)
+			} else {
+				D <-  fixedN*2*dd[, cNT$freq]*(1 - dd[, cNT$freq])
+				vy <- D*dd[ , cNT$se]**2 + D*dd[, cNT$beta]**2/(fixedN - 1)
+			}
+			dvy <- density(na.omit(vy))
+			vys[i] <- dvy$x[which.max(dvy$y)] #median(vy, na.rm = TRUE)
+		}
+		progress((m - i + 1)/m*100)
+	}
+	cat('\n')
+	if (est.var) cat('phenotypic variances are:', vys, '\n')
+	cat('checking markers ...\n')
+	snps <- data[[1]][, cNT$snp]
+	for (i in 2:m) {
+		snps <- data[[i]][ data[[i]][, cNT$snp] %in% snps, cNT$snp]
+		progress(i/m*100)
+	}
+	snps <- unique(snps)
+	cat('\n')
+	cat('cleaning data ...\n')
+	for (i in 1:m) {
+		data[[i]] <- data[[i]][snps,]
+		progress(i/m*100)
+	}
+	cat('\n')
+	cat('correcting parameters ...\n')
+	for (i in 2:m) {
+		if (any(data[[i]][, cNT[['a1']]] != data[[1]][, cNT[['a1']]])) {
+			adj <- 2*as.numeric(data[[i]][, cNT[['a1']]] == data[[1]][, cNT[['a1']]]) - 1
+			data[[i]][, cNT$beta] <- data[[i]][, cNT$beta]*adj
+			data[[i]][, cNT$freq] <- (adj == 1)*data[[i]][, cNT$freq] + (adj == -1)*(1 - data[[i]][,cNT$freq])
+		}
+		progress(i/m*100)
+	}
+	cat('\n')
+	cat('adjusting sample size ... ')
+	n0 <- matrix(NA, nrow(data[[1]]), m)
+	if (is.null(fixedN)) {
+		for (i in 1:m) {
+			n0[,i] <- data[[i]][,cNT$n]
+		}
+	} else {
+		for (i in 1:m) {
+			n0[,i] <- fixedN
+		}            
+	}
+	n <- apply(n0, 1, "min")
+	cat('done.\n')
+	cat('finalizing summary statistics ...\n')
+	gwa0 <- matrix(NA, nrow(data[[1]]), 2*m + 2)
+	for (i in 1:m) {
+		gwa0[,i*2 - 1] <- data[[i]][,cNT$beta]
+		gwa0[,i*2] <- data[[i]][,cNT$se]
+		progress(i/m*100)
+	}
+	gwa0[,2*length(data) + 1] <- data[[1]][,cNT$freq]
+	gwa0[,2*length(data) + 2] <- n
+	rownames(gwa0) <- data[[1]][,cNT$snp]
+	gwa0 <- na.omit(gwa0)
+	cat('\n')
+	if (is.null(cor.pheno)) {
+		n.ratio <- diag(m)
+		for (i in 1:(m - 1)) {
+			for (j in (i + 1):m) {
+				ratio <- mean(sqrt(n0[,j]/n0[,i]), na.rm = TRUE)
+				n.ratio[i,j] <- n.ratio[j,i] <- ifelse(ratio > 1, 1/ratio, ratio)
+			}
+		}
+		if (any(n.ratio < 1)) {
+			cat('samples partially overlap!\n')
+			cat('estimating shrinkage phenotypic correlations ... ')
+		} else {
+			cat('estimating phenotypic correlations ... ')
+		}
+		idx <- which(rownames(gwa0) %in% indep.snps)
+		gwa1 <- gwa0[idx,]
+		z <- gwa1[,seq(1, 2*m, 2)]/gwa1[,seq(2, 2*m, 2)]
+		cor.pheno <- cor(z, use = 'pairwise.complete.obs')
+		cat('done.\n')
+	}
+	dimnames(cor.pheno) <- list(files, files)
+	gwanames <- c(paste(rep(files, each = 2), rep(c('.beta', '.se'), m), sep = ''), 'f', 'n')
+	colnames(gwa0) <- gwanames
+	dd <- list(gwa = gwa0, cor.pheno = cor.pheno, var.pheno = vys)
+	class(dd) <- 'multi.summary'
+	return(dd)
+}



More information about the Genabel-commits mailing list