[Genabel-commits] r1625 - branches/ProbABEL-0.50/src
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Feb 27 22:56:38 CET 2014
Author: maartenk
Date: 2014-02-27 22:56:38 +0100 (Thu, 27 Feb 2014)
New Revision: 1625
Modified:
branches/ProbABEL-0.50/src/reg1.cpp
Log:
using predefined matrices in mmscore method. Initial testing showed a 35% speedup in the regression part with(in a separate toy program to test regression)
Modified: branches/ProbABEL-0.50/src/reg1.cpp
===================================================================
--- branches/ProbABEL-0.50/src/reg1.cpp 2014-02-26 21:43:42 UTC (rev 1624)
+++ branches/ProbABEL-0.50/src/reg1.cpp 2014-02-27 21:56:38 UTC (rev 1625)
@@ -357,6 +357,7 @@
double sigma2_internal;
#if EIGEN
+
LDLT <MatrixXd> Ch;
#else
mematrix<double> tXX_i;
@@ -373,12 +374,30 @@
//Oct 26, 2009
#if EIGEN
- // next line is 5997000 flops
- MatrixXd tXW = X.data.transpose() * invvarmatrixin.masked_data->data;
- Ch = LDLT <MatrixXd>(tXW * X.data); // 17991 flops
- beta.data = Ch.solve(tXW * reg_data.Y.data);//5997 flops
- //next line is: 1000+5000+3000= 9000 flops
- sigma2 = (reg_data.Y.data - tXW.transpose() * beta.data).squaredNorm();
+ cout << "BB"<<X.data.cols()<<"AAAAAAa"<<endl;
+ if (X.data.cols()== 3){
+ Matrix<double,3,Dynamic> tXW = X.data.transpose()*invvarmatrixin.masked_data->data;
+ Matrix3d xWx = tXW * X.data;
+ Ch = LDLT <MatrixXd> (xWx );
+ Vector3d beta_3f = Ch.solve(tXW * reg_data.Y.data);
+ sigma2 = (reg_data.Y.data - tXW.transpose() * beta_3f).squaredNorm();
+ beta.data = beta_3f;
+ }
+ else if(X.data.cols()== 2){
+ Matrix<double,2,Dynamic> tXW = X.data.transpose()*invvarmatrixin.masked_data->data;
+ Matrix2d xWx = tXW * X.data;
+ Ch = LDLT <MatrixXd> (xWx );
+ Vector2d beta_2f = Ch.solve(tXW * reg_data.Y.data);
+ sigma2 = (reg_data.Y.data - tXW.transpose() * beta_2f).squaredNorm();
+ beta.data = beta_2f;
+ }else{
+ // next line is 5997000 flops
+ MatrixXd tXW = X.data.transpose() * invvarmatrixin.masked_data->data;
+ Ch = LDLT <MatrixXd>(tXW * X.data); // 17991 flops
+ beta.data = Ch.solve(tXW * reg_data.Y.data);//5997 flops
+ //next line is: 1000+5000+3000= 9000 flops
+ sigma2 = (reg_data.Y.data - tXW.transpose() * beta.data).squaredNorm();
+ }
#else
// next line is 5997000 flops
mematrix<double> tXW = transpose(X) * invvarmatrixin.masked_data;
More information about the Genabel-commits
mailing list