[Genabel-commits] r1612 - in branches/ProbABEL-0.50: checks/R-tests src

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Sat Feb 15 22:39:14 CET 2014


Author: maartenk
Date: 2014-02-15 22:39:14 +0100 (Sat, 15 Feb 2014)
New Revision: 1612

Modified:
   branches/ProbABEL-0.50/checks/R-tests/run_models_in_R_palinear.R
   branches/ProbABEL-0.50/src/command_line_settings.cpp
   branches/ProbABEL-0.50/src/command_line_settings.h
   branches/ProbABEL-0.50/src/data.cpp
   branches/ProbABEL-0.50/src/data.h
   branches/ProbABEL-0.50/src/main.cpp
   branches/ProbABEL-0.50/src/main_functions_dump.cpp
   branches/ProbABEL-0.50/src/maskedmatrix.cpp
   branches/ProbABEL-0.50/src/maskedmatrix.h
   branches/ProbABEL-0.50/src/reg1.cpp
   branches/ProbABEL-0.50/src/reg1.h
Log:
-Fixed typo in run_models_in_R_palinear.R in a variable name (test will now succeed)
-Comment out 2 unused functions (getProgramName andNmeasured ) made todo's to remove them in the future
-Solved some cpplint and cppcheck warnings


Modified: branches/ProbABEL-0.50/checks/R-tests/run_models_in_R_palinear.R
===================================================================
--- branches/ProbABEL-0.50/checks/R-tests/run_models_in_R_palinear.R	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/checks/R-tests/run_models_in_R_palinear.R	2014-02-15 21:39:14 UTC (rev 1612)
@@ -123,7 +123,7 @@
 }
 colnames(prob.2df.R) <- cols2df
 rownames(prob.2df.R) <- NULL
-#stopifnot( all.equal(prob.2df.PA1[1:5,], prob.2df.R[1:5,], tol=tol) )
+stopifnot( all.equal(prob.2df.PA[1:5,], prob.2df.R[1:5,], tol=tol) )
 cat("2df\n")
 
 cat("\t\t\t\t\t\tOK\n")

Modified: branches/ProbABEL-0.50/src/command_line_settings.cpp
===================================================================
--- branches/ProbABEL-0.50/src/command_line_settings.cpp	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/command_line_settings.cpp	2014-02-15 21:39:14 UTC (rev 1612)
@@ -120,12 +120,12 @@
 {
     return outfilename;
 }
+//TODO(unknown) This function is not used. Remove in near future
+//char* cmdvars::getProgramName() const
+//{
+//    return program_name;
+//}
 
-char* cmdvars::getProgramName() const
-{
-    return program_name;
-}
-
 int cmdvars::getRobust() const
 {
     return robust;

Modified: branches/ProbABEL-0.50/src/command_line_settings.h
===================================================================
--- branches/ProbABEL-0.50/src/command_line_settings.h	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/command_line_settings.h	2014-02-15 21:39:14 UTC (rev 1612)
@@ -116,7 +116,8 @@
     int getNoutcomes() const;
     int getNpeople() const;
     string getOutfilename() const;
-    char* getProgramName() const;
+//TODO(unknown) This function is not used. Remove in near future
+//    char* getProgramName() const;
     int getRobust() const;
     int getScore() const;
     string getSep() const;

Modified: branches/ProbABEL-0.50/src/data.cpp
===================================================================
--- branches/ProbABEL-0.50/src/data.cpp	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/data.cpp	2014-02-15 21:39:14 UTC (rev 1612)
@@ -47,49 +47,45 @@
 #endif
 #include "utilities.h"
 
+//TODO(unknown) This function is not used. Remove in near future
+//unsigned int Nmeasured(char * fname, int nphenocols, int npeople)
+//{
+//// first pass -- find unmeasured people
+//    std::ifstream infile(fname);
+//    if (!infile)
+//    {
+//        std::cerr << "Nmeasured: cannot open file " << fname << endl;
+//    }
+//    char tmp[100];
+//
+//    for (int i = 0; i < nphenocols; i++)
+//    {
+//        infile >> tmp;
+//    }
+//
+//    unsigned short int * allmeasured = new unsigned short int[npeople];
+//    int nids = 0;
+//    for (int i = 0; i < npeople; i++)
+//    {
+//        allmeasured[i] = 1;
+//        infile >> tmp;
+//        for (int j = 1; j < nphenocols; j++)
+//        {
+//            infile >> tmp;
+//            if (tmp[0] == 'N' || tmp[0] == 'n')
+//                allmeasured[i] = 0;
+//        }
+//        if (allmeasured[i] == 1)
+//            nids++;
+//    }
+//    infile.close();
+//
+//    delete[] allmeasured;
+//
+//    return (nids);
+//}
 
-unsigned int Nmeasured(char * fname, int nphenocols, int npeople)
-{
-//TODO: unused variables remove them for good if there is no reason to keep them
-//int ncov = nphenocols - 2;
-//int nids_all = npeople;
 
-// first pass -- find unmeasured people
-    std::ifstream infile(fname);
-    if (!infile)
-    {
-        std::cerr << "Nmeasured: cannot open file " << fname << endl;
-    }
-    char tmp[100];
-
-    for (int i = 0; i < nphenocols; i++)
-    {
-        infile >> tmp;
-    }
-
-    unsigned short int * allmeasured = new unsigned short int[npeople];
-    int nids = 0;
-    for (int i = 0; i < npeople; i++)
-    {
-        allmeasured[i] = 1;
-        infile >> tmp;
-        for (int j = 1; j < nphenocols; j++)
-        {
-            infile >> tmp;
-            if (tmp[0] == 'N' || tmp[0] == 'n')
-                allmeasured[i] = 0;
-        }
-        if (allmeasured[i] == 1)
-            nids++;
-    }
-    infile.close();
-
-    delete[] allmeasured;
-
-    return (nids);
-}
-
-
 /**
  * Read SNP information from an mlinfo file generated by the
  * imputation software.
@@ -269,5 +265,3 @@
 {
     return matrix;
 }
-
-//________________________________________Maksim_end

Modified: branches/ProbABEL-0.50/src/data.h
===================================================================
--- branches/ProbABEL-0.50/src/data.h	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/data.h	2014-02-15 21:39:14 UTC (rev 1612)
@@ -31,8 +31,8 @@
 #include <string>
 
 extern bool is_interaction_excluded;
-
-unsigned int Nmeasured(char * fname, int nphenocols, int npeople);
+//TODO(unknown) This function is not used. Remove in near future
+//unsigned int Nmeasured(char * fname, int nphenocols, int npeople);
 #include "phedata.h"
 #include "gendata.h"
 
@@ -80,4 +80,4 @@
     ~InvSigma();
 };
 
-#endif /* DATA_H_ */
+#endif//DATA_H_

Modified: branches/ProbABEL-0.50/src/main.cpp
===================================================================
--- branches/ProbABEL-0.50/src/main.cpp	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/main.cpp	2014-02-15 21:39:14 UTC (rev 1612)
@@ -151,7 +151,7 @@
 #if LOGISTIC
     logistic_reg nrd = logistic_reg(nrgd);
 
-    nrd.estimate( 0, MAXITER, EPS, 0,
+    nrd.estimate(0, MAXITER, EPS, 0,
                  input_var.getInteraction(),
                  input_var.getNgpreds(),
                  invvarmatrix,
@@ -163,7 +163,7 @@
 #if DEBUG
     std::cout << "[DEBUG] linear_reg nrd = linear_reg(nrgd); DONE.";
 #endif
-    nrd.estimate( 0, CHOLTOL, 0, input_var.getInteraction(),
+    nrd.estimate(0, CHOLTOL, 0, input_var.getInteraction(),
                  input_var.getNgpreds(), invvarmatrix,
                  input_var.getRobust(), 1);
 #elif COXPH
@@ -199,7 +199,8 @@
         {
             create_header(outfile, input_var, phd, interaction_cox);
         }
-    } else  // Dosage data: Only additive model => only one output file
+    }
+    else  // Dosage data: Only additive model => only one output file
     {
         outfile.push_back(
             new std::ofstream((outfilename_str + "_add.out.txt").c_str()));
@@ -278,8 +279,7 @@
                 write_mlinfo(outfile, file, mli, csnp, input_var,
                              rgd.gcount, rgd.freq);
             }
-        } else
-        {
+        } else{
             // Dosage data: only additive model
             int file = 0;
             write_mlinfo(outfile, file, mli, csnp, input_var,
@@ -304,7 +304,7 @@
                 }
                 else
                 {
-                    rd.estimate( 0, MAXITER, EPS, model,
+                    rd.estimate(0, MAXITER, EPS, model,
                                 input_var.getInteraction(),
                                 input_var.getNgpreds(),
                                 invvarmatrix,
@@ -321,7 +321,7 @@
                 }
                 else
                 {
-                    rd.estimate( 0, CHOLTOL, model,
+                    rd.estimate(0, CHOLTOL, model,
                                 input_var.getInteraction(),
                                 input_var.getNgpreds(),
                                 invvarmatrix,
@@ -405,7 +405,7 @@
                             regdata new_rgd = rgd;
                             new_rgd.remove_snp_from_X();
                             linear_reg new_null_rd(new_rgd);
-                            new_null_rd.estimate( 0,
+                            new_null_rd.estimate(0,
                                                  CHOLTOL, model,
                                                  input_var.getInteraction(),
                                                  input_var.getNgpreds(),
@@ -416,7 +416,7 @@
                             regdata new_rgd = rgd;
                             new_rgd.remove_snp_from_X();
                             logistic_reg new_null_rd(new_rgd);
-                            new_null_rd.estimate( 0, MAXITER, EPS,
+                            new_null_rd.estimate(0, MAXITER, EPS,
                                                   model,
                                                  input_var.getInteraction(),
                                                  input_var.getNgpreds(),
@@ -440,8 +440,7 @@
                             // No missing SNP data, we can compute the LRT
                             *chi2[model] << 2. * (loglik - null_loglik);
                         }
-                    } else
-                    {
+                    } else{
                         // We want score test output
                         *chi2[model] << rd.chi2_score;
                     }
@@ -481,8 +480,7 @@
                 if (input_var.getNgpreds() == 0)
                 {
                     end_pos = rgd.X.ncol;
-                } else
-                {
+                } else{
                     end_pos = rgd.X.ncol - 1;
                 }
 
@@ -511,16 +509,15 @@
                             *covvalue[model] << "nan"
                                              << input_var.getSep()
                                              << "nan";
-                        } else
-                        {
+                        } else{
                             *covvalue[model] << "nan";
                         }
                     }
 #endif
                     // Oct 26, 2009
                     *chi2[model] << "nan";
-                } else
-                { // ngpreds==1 (and SNP is rare)
+                } else{
+                    // ngpreds==1 (and SNP is rare)
                     if (input_var.getInverseFilename() == NULL)
                     {
                         //                     Han Chen

Modified: branches/ProbABEL-0.50/src/main_functions_dump.cpp
===================================================================
--- branches/ProbABEL-0.50/src/main_functions_dump.cpp	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/main_functions_dump.cpp	2014-02-15 21:39:14 UTC (rev 1612)
@@ -417,8 +417,7 @@
         if (input_var.getNgpreds() == 2)
         {
             start_pos = number_of_rows_or_columns - 2;
-        } else
-        {
+        } else{
             start_pos = number_of_rows_or_columns - 1;
         }
     } else if (!input_var.getAllcov() && model == 0
@@ -427,8 +426,7 @@
         if (input_var.getNgpreds() == 2)
         {
             start_pos = number_of_rows_or_columns - 4;
-        } else
-        {
+        } else{
             start_pos = number_of_rows_or_columns - 2;
         }
     } else if (!input_var.getAllcov() && model != 0
@@ -439,8 +437,7 @@
             && input_var.getInteraction() != 0)
     {
         start_pos = number_of_rows_or_columns - 2;
-    } else
-    {
+    } else{
         start_pos = 0;
     }
 

Modified: branches/ProbABEL-0.50/src/maskedmatrix.cpp
===================================================================
--- branches/ProbABEL-0.50/src/maskedmatrix.cpp	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/maskedmatrix.cpp	2014-02-15 21:39:14 UTC (rev 1612)
@@ -26,6 +26,9 @@
  */
 
 
+
+
+#include <algorithm>
 #include "maskedmatrix.h"
 #if EIGEN
 #include "eigen_mematrix.h"
@@ -47,11 +50,8 @@
 //    matrix_original = M;
     masked_data = &matrix_original;
     mask_of_old = new unsigned short int[M.nrow];
-    std::fill (mask_of_old,mask_of_old+M.nrow,0);
-    //TODO:set length of mask for all types
+    std::fill(mask_of_old, mask_of_old+M.nrow, 0);
     length_of_mask = M.nrow;
-    //TODO:set type (row,column,symmetric)
-    //type="symmetric";
 }
 
 void masked_matrix::set_matrix(const mematrix<double> &M)
@@ -59,11 +59,8 @@
     matrix_original = M;
     masked_data = &matrix_original;
     mask_of_old = new unsigned short int[M.nrow];
-    std::fill (mask_of_old,mask_of_old+M.nrow,0);
-    //TODO:set length of mask for all types
+    std::fill(mask_of_old, mask_of_old+M.nrow, 0);
     length_of_mask = M.nrow;
-    //TODO:set type (row,column,symmetric)
-    //type="symmetric";
 }
 
 masked_matrix::~masked_matrix()
@@ -85,7 +82,7 @@
     else
     {
         //Check update mask is the same as old matrix
-        if (std::equal (newmask, newmask+length_of_mask, mask_of_old))
+        if (std::equal(newmask, newmask+length_of_mask, mask_of_old))
         {
             //new mask is the same as old matrix
             masked_data = &matrix_masked_data;
@@ -94,7 +91,7 @@
         {
             // new mask differs from old matrix and create new.
             // mask_of_old = newmask;
-            std::copy(newmask, newmask+length_of_mask,mask_of_old);
+            std::copy(newmask, newmask+length_of_mask, mask_of_old);
             mask_symmetric(nmeasured);
             masked_data = &matrix_masked_data;
         }

Modified: branches/ProbABEL-0.50/src/maskedmatrix.h
===================================================================
--- branches/ProbABEL-0.50/src/maskedmatrix.h	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/maskedmatrix.h	2014-02-15 21:39:14 UTC (rev 1612)
@@ -55,4 +55,4 @@
     void mask_symmetric(int nmeasured);
 };
 
-#endif /* MASKEDMATRIX_H_ */
+#endif//MASKEDMATRIX_H_

Modified: branches/ProbABEL-0.50/src/reg1.cpp
===================================================================
--- branches/ProbABEL-0.50/src/reg1.cpp	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/reg1.cpp	2014-02-15 21:39:14 UTC (rev 1612)
@@ -91,14 +91,14 @@
                             {
                                 col_new++;
                                 nX_without_interact_phe[row
-                                        * nX_without_interact_phe.ncol + col_new] =
+                                    * nX_without_interact_phe.ncol + col_new] =
                                         nX[row * nX.ncol + col];
                             }
                             if (col != interaction - 1 && iscox)
                             {
                                 col_new++;
                                 nX_without_interact_phe[row
-                                        * nX_without_interact_phe.ncol + col_new] =
+                                    * nX_without_interact_phe.ncol + col_new] =
                                         nX[row * nX.ncol + col];
                             }
                         } // interaction_only, model==0, ngpreds==2
@@ -148,14 +148,14 @@
                             {
                                 col_new++;
                                 nX_without_interact_phe[row
-                                        * nX_without_interact_phe.ncol + col_new] =
+                                    * nX_without_interact_phe.ncol + col_new] =
                                         nX[row * nX.ncol + col];
                             }
                             if (col != interaction - 1 && iscox)
                             {
                                 col_new++;
                                 nX_without_interact_phe[row
-                                        * nX_without_interact_phe.ncol + col_new] =
+                                     * nX_without_interact_phe.ncol + col_new] =
                                         nX[row * nX.ncol + col];
                             }
                         }
@@ -311,7 +311,7 @@
 }
 
 
-void linear_reg::estimate( int verbose, double tol_chol,
+void linear_reg::estimate(int verbose, double tol_chol,
         int model, int interaction, int ngpreds, masked_matrix& invvarmatrixin,
         int robust, int nullmodel) {
     // suda interaction parameter
@@ -357,7 +357,7 @@
     double sigma2_internal;
 
 #if EIGEN
-    LDLT <MatrixXd> Ch ;
+    LDLT <MatrixXd> Ch;
 #else
     mematrix<double> tXX_i;
 #endif
@@ -373,13 +373,15 @@
         //Oct 26, 2009
 
 #if EIGEN
-        MatrixXd tXW = X.data.transpose() * invvarmatrixin.masked_data->data; // flops 5997000
+        // next line is  5997000 flops
+        MatrixXd tXW = X.data.transpose() * invvarmatrixin.masked_data->data;
         Ch = LDLT <MatrixXd>(tXW * X.data); // 17991 flops
-        beta.data = Ch.solve(tXW * reg_data.Y.data);
-        sigma2 = (reg_data.Y.data - tXW.transpose() * beta.data).squaredNorm() ; //flops: 1000+5000+3000
+        beta.data = Ch.solve(tXW * reg_data.Y.data);//5997 flops
+        //next line is: 1000+5000+3000= 9000 flops
+        sigma2 = (reg_data.Y.data - tXW.transpose() * beta.data).squaredNorm();
 #else
-
-        mematrix<double> tXW = transpose(X) * invvarmatrixin.masked_data; // flops 5997000
+        // next line is  5997000 flops
+        mematrix<double> tXW = transpose(X) * invvarmatrixin.masked_data;
         tXX_i = tXW * X;        // 17991 flops
         // use cholesky to invert
         cholesky2_mm(tXX_i, tol_chol);
@@ -387,11 +389,12 @@
         beta = tXX_i * (tXW * reg_data.Y);        // flops 15+5997
         // now compute residual variance
         sigma2 = 0.;
+        //next line is: 1000+5000+= 6000 flops
         mematrix<double> sigma2_matrix = reg_data.Y - (transpose(tXW) * beta); //flops: 1000+5000
         for (int i = 0; i < sigma2_matrix.nrow; i++)
         {
             double val = sigma2_matrix.get(i, 0);
-            sigma2 += val * val; // flops: 3000
+            sigma2 += val * val; // flops: 3000 (iterations counted)
         }
 #endif
         double N = X.nrow;
@@ -409,9 +412,9 @@
         int m = X.ncol;
         MatrixXd txx = MatrixXd(m, m).setZero().selfadjointView<Lower>().\
                 rankUpdate(X.data.adjoint());
-        Ch=LDLT <MatrixXd>(txx.selfadjointView<Lower>());
-        beta.data= Ch.solve(X.data.adjoint() * reg_data.Y.data);
-        sigma2 = (reg_data.Y.data - (X.data * beta.data)).squaredNorm() ;
+        Ch = LDLT <MatrixXd>(txx.selfadjointView<Lower>());
+        beta.data = Ch.solve(X.data.adjoint() * reg_data.Y.data);
+        sigma2 = (reg_data.Y.data - (X.data * beta.data)).squaredNorm();
 
 #else
         mematrix<double> tX = transpose(X);
@@ -431,7 +434,7 @@
         }
 #endif
         double N = static_cast<double>(X.nrow);
-        double P=static_cast<double>(length_beta);
+        double P = static_cast<double>(length_beta);
         sigma2_internal = sigma2 / (N - P);
         sigma2 /= N;
     }
@@ -456,16 +459,16 @@
 
 #if EIGEN
     double intercept = beta.get(0, 0);
-    residuals.data= reg_data.Y.data.array()-intercept;
+    residuals.data = reg_data.Y.data.array()-intercept;
     //matrix.
-    ArrayXXd betacol = beta.data.block(1,0,beta.data.rows()-1,1)\
+    ArrayXXd betacol = beta.data.block(1, 0, beta.data.rows()-1, 1)\
             .array().transpose();
-    ArrayXXd resid_sub = (X.data.block(0,1,X.data.rows(),X.data.cols()-1)\
-            *betacol.matrix().asDiagonal()).rowwise().sum() ;
+    ArrayXXd resid_sub = (X.data.block(0, 1, X.data.rows(), X.data.cols()-1)\
+            *betacol.matrix().asDiagonal()).rowwise().sum();
     //std::cout << resid_sub << std::endl;
-    residuals.data-=resid_sub.matrix();
+    residuals.data -= resid_sub.matrix();
     //residuals[i] -= resid_sub;
-    loglik-=(residuals.data.array().square()*halfrecsig2).sum();
+    loglik -= (residuals.data.array().square()*halfrecsig2).sum();
 
     //loglik -= halfrecsig2 * residuals[i] * residuals[i];
 
@@ -483,7 +486,7 @@
 
     loglik -= static_cast<double>(reg_data.nids) * log(sqrt(sigma2));
 #if EIGEN
-    MatrixXd tXX_inv=Ch.solve(MatrixXd(length_beta, length_beta).
+    MatrixXd tXX_inv = Ch.solve(MatrixXd(length_beta, length_beta).
             Identity(length_beta,length_beta));
 #endif
 
@@ -512,7 +515,6 @@
 
 #endif
 
-
     }
     //cout << "estimate 0\n";
 #if EIGEN
@@ -526,18 +528,17 @@
                 (sigma2_internal
                         * tXX_inv.diagonal().array()).sqrt();
     }
-    int offset=X.ncol- 1;
+    int offset = X.ncol- 1;
     //if additive and interaction and 2 predictors and more then 2 betas
 
     if (model == 0 && interaction != 0 && ngpreds == 2 && length_beta > 2){
-          offset=X.ncol - 2;
+          offset = X.ncol - 2;
     }
 
     if (robust)
     {
         covariance.data = robust_sigma2.data.bottomLeftCorner(
                 offset, offset).diagonal();
-
     }
     else
     {
@@ -603,13 +604,12 @@
         }
     }
 #endif
-
 }
 
 void linear_reg::score(mematrix<double>& resid,
         double tol_chol, int model, int interaction, int ngpreds,
         const masked_matrix& invvarmatrix, int nullmodel) {
-   // regdata rdata = rdatain.get_unmasked_data();
+    //regdata rdata = rdatain.get_unmasked_data();
     base_score(resid,  tol_chol, model, interaction, ngpreds,
             invvarmatrix, nullmodel = 0);
 }
@@ -632,7 +632,7 @@
     chi2_score = -1.;
 }
 
-void logistic_reg::estimate( int verbose, int maxiter,
+void logistic_reg::estimate(int verbose, int maxiter,
         double eps, int model, int interaction, int ngpreds,
         masked_matrix& invvarmatrixin, int robust, int nullmodel) {
     // In contrast to the 'linear' case 'invvarmatrix' contains the
@@ -656,7 +656,6 @@
 
     if (length_beta > 1)
     {
-
         if (model == 0 && interaction != 0 && ngpreds == 2 && length_beta > 2)
         {
             covariance.reinit(length_beta - 2, 1);
@@ -687,7 +686,7 @@
 
     if (invvarmatrix.nrow != 0 && invvarmatrix.ncol != 0)
     {
-        //TODO(maarten):invvarmatix is symmetric:is there an more effective way?
+        //TODO(maarten) invvarmatix is symmetric:is there an more effective way?
         tX = tX * invvarmatrix;
     }
     /*
@@ -706,7 +705,6 @@
      */
     niter = 0;
     double delta = 1.;
-    double prevlik = 0.;
     while (niter < maxiter && delta > eps)
     {
         mematrix<double> eMu = (X) * beta;
@@ -776,7 +774,7 @@
         }
         // std::cout << "beta:\n"; beta.print();
         // compute likelihood
-        prevlik = loglik;
+        double prevlik = loglik;
         loglik = 0.;
         for (int i = 0; i < eMu.nrow; i++)
             loglik += reg_data.Y[i] * eMu_us[i] - log(1. + exp(eMu_us[i]));

Modified: branches/ProbABEL-0.50/src/reg1.h
===================================================================
--- branches/ProbABEL-0.50/src/reg1.h	2014-02-14 14:14:21 UTC (rev 1611)
+++ branches/ProbABEL-0.50/src/reg1.h	2014-02-15 21:39:14 UTC (rev 1612)
@@ -85,13 +85,13 @@
     linear_reg(regdata& rdatain);
     ~linear_reg()
     {
-        delete [] reg_data.masked_data ;
+        delete [] reg_data.masked_data;
         //		delete beta;
         //		delete sebeta;
         //		delete residuals;
     }
 
-    void estimate( int verbose, double tol_chol, int model,
+    void estimate(int verbose, double tol_chol, int model,
                   int interaction, int ngpreds,
                   masked_matrix& invvarmatrixin,
                   int robust, int nullmodel = 0);
@@ -108,12 +108,12 @@
     logistic_reg(regdata& rdatain);
     ~logistic_reg()
     {
-        delete [] reg_data.masked_data ;
+        delete [] reg_data.masked_data;
         //		delete beta;
         //		delete sebeta;
     }
 
-    void estimate( int verbose, int maxiter, double eps,
+    void estimate(int verbose, int maxiter, double eps,
                   int model, int interaction, int ngpreds,
                   masked_matrix& invvarmatrixin, int robust,
                   int nullmodel = 0);
@@ -123,4 +123,4 @@
                masked_matrix& invvarmatrix, int nullmodel = 0);
 };
 
-#endif
+#endif//REG1_H_



More information about the Genabel-commits mailing list