[Genabel-commits] r710 - pkg/GenABEL/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Mon Apr 18 11:14:06 CEST 2011
Author: yurii
Date: 2011-04-18 11:14:06 +0200 (Mon, 18 Apr 2011)
New Revision: 710
Modified:
pkg/GenABEL/man/polygenic_hglm.Rd
Log:
update help for polygenic_hglm
Modified: pkg/GenABEL/man/polygenic_hglm.Rd
===================================================================
--- pkg/GenABEL/man/polygenic_hglm.Rd 2011-04-18 09:12:31 UTC (rev 709)
+++ pkg/GenABEL/man/polygenic_hglm.Rd 2011-04-18 09:14:06 UTC (rev 710)
@@ -2,14 +2,20 @@
\alias{polygenic_hglm}
\title{Estimation of polygenic model...}
\usage{polygenic_hglm(formula, kinship.matrix, data, family=gaussian(),
- conv=1e-08, maxit=100, ...)}
+ conv=1e-06, maxit=100, ...)}
\description{Estimation of polygenic model}
-\details{Estimation of polygenic model using hierarchical
-GLM (hglm package)
-Tell when REML is used, what otherwise;
-what it is doing, how to do tests, add more examples, references, etc.}
+\details{Estimation of polygenic model using a hierarchical generalized linear model
+(HGLM; Lee and Nelder 1996. \code{hglm} package; Ronnegard et al. 2010).}
\author{Xia Shen, Yurii Aulchenko}
-\references{need to put reference here}
+\references{Ronnegard, L, Shen, X and Alam, M (2010). hglm: A Package For Fitting
+Hierarchical Generalized Linear Models. \emph{The R Journal}, \bold{2}(2), 20-28.
+
+Lee, Y and Nelder JA (2001). Hierarchical generalised linear models:
+A synthesis of generalised linear models, random-effect models
+and structured dispersions. \emph{Biometrika}, \bold{88}(4), 987-1006.
+
+Lee, Y and Nelder JA (1996). Hierarchical Generalized Linear Models.
+\emph{Journal of the Royal Statistical Society. Series B}, \bold{58}(4), 619-678.}
\seealso{\code{\link{polygenic}},
\code{\link{mmscore}},
\code{\link{grammar}}}
@@ -21,25 +27,59 @@
\item{kinship.matrix}{Kinship matrix, as provided by e.g. ibs(,weight="freq"),
or estimated outside of GenABEL from pedigree data.}
\item{data}{An (optional) object of \code{\link{gwaa.data-class}} or a data frame with
-outcome and covariates}
+outcome and covariates.}
\item{family}{a description of the error distribution and link function to be
used in the mean part of the model (see \code{\link{family}} for details of
-family functions)}
-\item{conv}{'conv' parameter of 'hglm' (stricter then default)}
-\item{maxit}{'maxit' parameter of 'hglm' (stricter then default)}
-\item{...}{other parameters passed to 'hglm' call}}
+family functions).}
+\item{conv}{'conv' parameter of \code{hglm} (stricter than default, for great precision, use 1e-8).}
+\item{maxit}{'maxit' parameter of \code{hglm} (stricter than default).}
+\item{...}{other parameters passed to \code{hglm} call}}
\examples{data(ge03d2ex.clean)
df <- ge03d2ex.clean[,autosomal(ge03d2ex.clean)]
gkin <- ibs(df,w="freq")
-# for quantitative traits
-h2ht <- polygenic_hglm(height ~ sex + age,kin=gkin,df)
-# estimate of heritability
+# ----- for quantitative traits
+h2ht <- polygenic_hglm(height ~ sex + age, kin = gkin, df)
+# ----- estimate of heritability
h2ht$esth2
-# other parameters
+# ----- other parameters
h2ht$h2an
-# for binary traits
-h2dm <- polygenic_hglm(dm2 ~ sex + age,kin=gkin,df,family=binomial(link = 'logit'))
-# estimated parameters
+# ----- test the significance of fixed effects
+# ----- (e.g. quantitative trait)
+h2ht <- polygenic_hglm(height ~ sex + age, kin = gkin, df)
+# ----- summary with standard errors and p-values
+summary(h2ht$hglm)
+# ----- output for the fixed effects part
+# ...
+# MEAN MODEL
+# Summary of the fixed effects estimates
+# Estimate Std. Error t value Pr(>|t|)
+# (Intercept) 169.53525 2.57624 65.807 < 2e-16 ***
+# sex 14.10694 1.41163 9.993 4.8e-15 ***
+# age -0.15332 0.05208 -2.944 0.00441 **
+# ---
+# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+# Note: P-values are based on 69 degrees of freedom
+# ...
+# ----- extract fixed effects estimates and standard errors
+h2ht$h2an
+
+# test the significance of polygenic effect
+h2ht <- polygenic_hglm(height ~ sex + age, kin = gkin, df, method = 'REML')
+nullht <- lm(height ~ sex + age, df)
+l1 <- h2ht$ProfLogLik
+l0 <- as.numeric(logLik(nullht))
+# the likelihood ratio test (LRT) statistic
+(S <- -2*(l0 - l1))
+# 5% right-tailed significance cutoff
+# for 50:50 mixture distribution between point mass 0 and \chi^{2}(1)
+# Self, SG and Liang KY (1987) Journal of the American Statistical Association.
+qchisq(((1 - .05) - .50)/.50, 1)
+# p-value
+pchisq(S, 1, lower.tail = FALSE)*2
+
+#' # ----- for binary traits
+h2dm <- polygenic_hglm(dm2 ~ sex + age, kin = gkin, df, family = binomial(link = 'logit'))
+# ----- estimated parameters
h2dm$h2an}
More information about the Genabel-commits
mailing list