[Distr-commits] r1234 - pkg/distrMod/tests/Examples
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Jul 31 09:03:06 CEST 2018
Author: stamats
Date: 2018-07-31 09:03:05 +0200 (Tue, 31 Jul 2018)
New Revision: 1234
Modified:
pkg/distrMod/tests/Examples/distrMod-Ex.Rout.save
Log:
update of Rout.save due to new aliases for MDEStimator
Modified: pkg/distrMod/tests/Examples/distrMod-Ex.Rout.save
===================================================================
--- pkg/distrMod/tests/Examples/distrMod-Ex.Rout.save 2018-07-30 22:21:00 UTC (rev 1233)
+++ pkg/distrMod/tests/Examples/distrMod-Ex.Rout.save 2018-07-31 07:03:05 UTC (rev 1234)
@@ -376,7 +376,7 @@
dimnames = list(nms, nms0))
list(fval = fval0, mat = mat0)
}
-<bytecode: 0x88e90c0>
+<bytecode: 0x9e38338>
Trafo / derivative matrix at which estimate was produced:
scale shape
shape 0.000 1
@@ -574,7 +574,7 @@
((x - 0)/c(scale = 1) * LogDeriv((x - 0)/c(scale = 1)) -
1)/c(scale = 1)
}
-<environment: 0x99ee1b0>
+<environment: 0xaf2fcb8>
> checkL2deriv(E1)
precision of centering: -1.51181e-06
@@ -750,8 +750,8 @@
Slot "fct":
function (x)
QuadFormNorm(x, A = A)
-<bytecode: 0x9bf8f68>
-<environment: 0x9bf8c58>
+<bytecode: 0xb13f8b0>
+<environment: 0xb13f5a0>
>
> ## The function is currently defined as
@@ -1030,7 +1030,7 @@
((x - 0)/c(meanlog = 1) * LogDeriv((x - 0)/c(meanlog = 1)) -
1)/c(meanlog = 1)
}
-<environment: 0x10c0ad98>
+<environment: 0x4396ab8>
> checkL2deriv(L1)
precision of centering: -0.003003394
@@ -1138,18 +1138,6 @@
+ return(res)
+ }
> MCEstimator(x = x, ParamFamily = G, criterion = negLoglikelihood)
-Warning in fn(par, ...) :
- Criterion evaluation at theta = 0.298,4.655 threw an error;
-returning starting par;
-
-Warning in fn(par, ...) :
- Criterion evaluation at theta = 0.764,4.655 threw an error;
-returning starting par;
-
-Warning in fn(par, ...) :
- Criterion evaluation at theta = 0.298,5.12 threw an error;
-returning starting par;
-
Evaluations of Minimum criterion estimate:
------------------------------------------
An object of class “Estimate”
@@ -1157,28 +1145,16 @@
MCEstimator(x = x, ParamFamily = G, criterion = negLoglikelihood)
samplesize: 50
estimate:
- scale shape
-0.2983286 4.6547001
+ scale shape
+0.342008 4.060286
Criterion:
-
-1e+20
+
+47.9651
>
> ## Kolmogorov(-Smirnov) minimum distance estimator
> ## Note: you can also use function MDEstimator!
> MCEstimator(x = x, ParamFamily = G, criterion = KolmogorovDist,
+ crit.name = "Kolmogorov distance")
-Warning in fn(par, ...) :
- Criterion evaluation at theta = 0.298,4.655 threw an error;
-returning starting par;
-
-Warning in fn(par, ...) :
- Criterion evaluation at theta = 0.764,4.655 threw an error;
-returning starting par;
-
-Warning in fn(par, ...) :
- Criterion evaluation at theta = 0.298,5.12 threw an error;
-returning starting par;
-
Evaluations of Minimum Kolmogorov distance estimate:
----------------------------------------------------
An object of class “Estimate”
@@ -1188,10 +1164,10 @@
samplesize: 50
estimate:
scale shape
-0.2983286 4.6547001
+0.3398645 4.2654569
Criterion:
Kolmogorov distance
- 1e+20
+ 0.06350364
>
> ## Total variation minimum distance estimator
> ## Note: you can also use function MDEstimator!
@@ -1251,7 +1227,8 @@
>
> ### Name: MDEstimator
> ### Title: Function to compute minimum distance estimates
-> ### Aliases: MDEstimator
+> ### Aliases: MDEstimator CvMMDEstimator KolmogorovMDEstimator
+> ### TotalVarMDEstimator HellingerMDEstimator
> ### Keywords: univar robust
>
> ### ** Examples
@@ -1276,6 +1253,23 @@
Criterion:
Kolmogorov distance
0.06350364
+> ## or
+> KolmogorovMDEstimator(x = x, ParamFamily = G)
+Evaluations of Minimum Kolmogorov distance estimate:
+----------------------------------------------------
+An object of class “Estimate”
+generated by call
+ MDEstimator(x = x, ParamFamily = ParamFamily, distance = KolmogorovDist,
+ paramDepDist = paramDepDist, startPar = startPar, Infos = Infos,
+ trafo = trafo, penalty = penalty, validity.check = validity.check,
+ asvar.fct = asvar.fct, na.rm = na.rm, .withEvalAsVar = .withEvalAsVar)
+samplesize: 50
+estimate:
+ scale shape
+0.3398645 4.2654569
+Criterion:
+Kolmogorov distance
+ 0.06350364
>
> ## von Mises minimum distance estimator with default mu
> MDEstimator(x = x, ParamFamily = G, distance = CvMDist)
@@ -1296,6 +1290,8 @@
> ##D ## von Mises minimum distance estimator with default mu
> ##D MDEstimator(x = x, ParamFamily = G, distance = CvMDist,
> ##D asvar.fct = .CvMMDCovariance)
+> ##D ## or
+> ##D CvMMDEstimator(x = x, ParamFamily = G)
> ##D
> ##D ## von Mises minimum distance estimator with mu = N(0,1)
> ##D MDEstimator(x = x, ParamFamily = G, distance = CvMDist, mu = Norm())
@@ -1303,6 +1299,8 @@
> ##D ## Total variation minimum distance estimator
> ##D ## gamma distributions are discretized
> ##D MDEstimator(x = x, ParamFamily = G, distance = TotalVarDist)
+> ##D ## or
+> ##D TotalVarMDEstimator(x = x, ParamFamily = G)
> ##D ## or smoothing of emprical distribution (takes some time!)
> ##D #MDEstimator(x = x, ParamFamily = G, distance = TotalVarDist, asis.smooth.discretize = "smooth")
> ##D
@@ -1310,9 +1308,11 @@
> ##D ## gamma distributions are discretized
> ##D distroptions(DistrResolution = 1e-10)
> ##D MDEstimator(x = x, ParamFamily = G, distance = HellingerDist, startPar = c(1,2))
+> ##D ## or
+> ##D HellingerMDEstimator(x = x, ParamFamily = G, startPar = c(1,2))
> ##D distroptions(DistrResolution = 1e-6) # default
> ##D ## or smoothing of emprical distribution (takes some time!)
-> ##D #MDEstimator(x = x, ParamFamily = G, distance = HellingerDist, asis.smooth.discretize = "smooth")
+> ##D MDEstimator(x = x, ParamFamily = G, distance = HellingerDist, asis.smooth.discretize = "smooth")
> ## End(Not run)
>
>
@@ -2027,7 +2027,7 @@
return(abs(x))
else return(sqrt(colSums(x^2)))
}
-<bytecode: 0x8073fc8>
+<bytecode: 0x12991d28>
<environment: namespace:distrMod>
> name(EuclNorm)
[1] "EuclideanNorm"
@@ -2059,7 +2059,7 @@
return(abs(x))
else return(sqrt(colSums(x^2)))
}
-<bytecode: 0x8073fc8>
+<bytecode: 0x12991d28>
<environment: namespace:distrMod>
>
@@ -2518,8 +2518,8 @@
Slot "fct":
function (x)
QuadFormNorm(x, A = A0)
-<bytecode: 0xc7498c0>
-<environment: 0xc749540>
+<bytecode: 0xbf7c598>
+<environment: 0xbf7c988>
>
> ## The function is currently defined as
@@ -2557,8 +2557,8 @@
Slot "fct":
function (x)
QuadFormNorm(x, A = A)
-<bytecode: 0xee72a50>
-<environment: 0xee72740>
+<bytecode: 0xbe53df0>
+<environment: 0xbe50340>
>
> ## The function is currently defined as
@@ -3580,7 +3580,7 @@
dimnames(mat) <- list(nfval, c("mean", "sd"))
return(list(fval = fval, mat = mat))
}
-<bytecode: 0x1061b6a0>
+<bytecode: 0xb1aa450>
> print(param(NS), show.details = "minimal")
An object of class "ParamWithScaleFamParameter"
name: location and scale
@@ -3629,7 +3629,7 @@
dimnames(mat) <- list(nfval, c("mean", "sd"))
return(list(fval = fval, mat = mat))
}
-<bytecode: 0x1061b6a0>
+<bytecode: 0xb1aa450>
Trafo / derivative matrix:
mean sd
mu/sig 0.3668695 -0.3024814
@@ -3672,7 +3672,7 @@
dimnames(mat) <- list(nfval, c("mean", "sd"))
return(list(fval = fval, mat = mat))
}
-<bytecode: 0x1061b6a0>
+<bytecode: 0xb1aa450>
Trafo / derivative matrix:
mean sd
mu/sig 0.3669 -0.3025
@@ -4050,7 +4050,7 @@
> cleanEx()
> options(digits = 7L)
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
-Time elapsed: 26.144 0.168 26.377 0 0.004
+Time elapsed: 31.872 0.196 32.183 0 0.008
> grDevices::dev.off()
null device
1
More information about the Distr-commits
mailing list