[Depmix-commits] r589 - in pkg/depmixS4: R inst/doc man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Fri Sep 13 16:25:31 CEST 2013


Author: ingmarvisser
Date: 2013-09-13 16:25:31 +0200 (Fri, 13 Sep 2013)
New Revision: 589

Modified:
   pkg/depmixS4/R/EM.R
   pkg/depmixS4/R/allGenerics.R
   pkg/depmixS4/R/depmix-class.R
   pkg/depmixS4/R/depmix.R
   pkg/depmixS4/R/fb.R
   pkg/depmixS4/R/forwardbackward.R
   pkg/depmixS4/R/logLik.R
   pkg/depmixS4/R/lystig.R
   pkg/depmixS4/R/makeDepmix.R
   pkg/depmixS4/R/makeTransModels.R
   pkg/depmixS4/R/transInit.R
   pkg/depmixS4/R/viterbi.R
   pkg/depmixS4/inst/doc/depmixS4.Rnw
   pkg/depmixS4/man/depmix-class.Rd
   pkg/depmixS4/man/depmix.sim-class.Rd
   pkg/depmixS4/man/makeDepmix.Rd
Log:
Replaced stationary with homogenous as class slot in depmix models and as argument in function makeDepmix. In the latter the stationary argument is retained with default value NULL and a warning is given when it is used.

Modified: pkg/depmixS4/R/EM.R
===================================================================
--- pkg/depmixS4/R/EM.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/EM.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -24,7 +24,7 @@
     out
 }
 
-emviterbi <- function(A,B,init,ntimes,nstates,stationary,na.allow=TRUE) {
+emviterbi <- function(A,B,init,ntimes,nstates,homogeneous,na.allow=TRUE) {
     # used for EM with hard classification, so that we don't need to change the object...
     # returns the most likely state sequence
     nt <- sum(ntimes)
@@ -53,7 +53,7 @@
       if(ntimes[case]>1) {
         for(tt in ((bt[case]+1):et[case])) {
           for(j in 1:ns) {
-            if(!stationary) {
+            if(!homogeneous) {
               delta[tt,j] <- max(delta[tt-1,]*(A[tt,j,]))*B[tt,j]
               k <- which.max(delta[tt-1,]*A[tt,j,])
             } else {
@@ -288,7 +288,7 @@
 	# initial expectation
   if(clsf == "hard") {
     fbo <- list()
-	  vstate <- emviterbi(A=trDens,B=dens,init=init,ntimes=object at ntimes,nstates=ns,stationary=object at stationary,na.allow=na.allow)[,1]
+	  vstate <- emviterbi(A=trDens,B=dens,init=init,ntimes=object at ntimes,nstates=ns,homogeneous=object at homogeneous,na.allow=na.allow)[,1]
 	  fbo$gamma <- as.matrix(model.matrix(~ factor(vstate,levels=1:ns) - 1))
 	  fbo$xi <- array(0,dim=c(sum(ntimes),ns,ns))
 	  fbo$xi[cbind(1:(sum(ntimes)- 1),vstate[-1],vstate[-length(vstate)])] <- 1
@@ -296,7 +296,7 @@
 	  if(na.allow) B[is.na(B)] <- 1
 	  fbo$logLike <- sum(log((apply(B,c(1,3),prod))[cbind(1:sum(ntimes),vstate)]))
 	} else {
-	  fbo <- fb(init=init,A=trDens,B=dens,ntimes=ntimes(object),stationary=object at stationary)
+	  fbo <- fb(init=init,A=trDens,B=dens,ntimes=ntimes(object),homogeneous=object at homogeneous)
   }
 	LL <- fbo$logLike
 	if(is.nan(LL)) stop("Starting values not feasible; please provide them.")
@@ -312,7 +312,7 @@
 				
 		trm <- matrix(0,ns,ns)
 		for(i in 1:ns) {
-			if(!object at stationary) {
+			if(!object at homogeneous) {
 				transition[[i]]@y <- fbo$xi[,,i]/fbo$gamma[,i]
 				transition[[i]] <- fit(transition[[i]],w=as.matrix(fbo$gamma[,i]),ntimes=ntimes(object)) # check this
 			} else {
@@ -341,7 +341,7 @@
 		
 		if(clsf == "hard") {
       fbo <- list()
-      vstate <- emviterbi(A=trDens,B=dens,init=init,ntimes=object at ntimes,nstates=ns,stationary=object at stationary,na.allow=na.allow)[,1]
+      vstate <- emviterbi(A=trDens,B=dens,init=init,ntimes=object at ntimes,nstates=ns,homogeneous=object at homogeneous,na.allow=na.allow)[,1]
 		  #vstate <- viterbi(object)[,1]
 		  fbo$gamma <- as.matrix(model.matrix(~ factor(vstate,levels=1:ns) - 1))
 		  fbo$xi <- array(0,dim=c(sum(ntimes),ns,ns))
@@ -351,7 +351,7 @@
 		  fbo$logLike <- sum(log((apply(B,c(1,3),prod))[cbind(1:sum(ntimes),vstate)]))
 		} else {
 		  # expectation
-		  fbo <- fb(init=init,A=trDens,B=dens,ntimes=ntimes(object),stationary=object at stationary)	  
+		  fbo <- fb(init=init,A=trDens,B=dens,ntimes=ntimes(object),homogeneous=object at homogeneous)	  
 	  }
 	  
 	  LL <- fbo$logLike	

Modified: pkg/depmixS4/R/allGenerics.R
===================================================================
--- pkg/depmixS4/R/allGenerics.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/allGenerics.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -44,7 +44,7 @@
 
 setGeneric("getConstraints", function(object, ...) standardGeneric("getConstraints"))
 
-setGeneric("is.stationary", function(object,...) standardGeneric("is.stationary"))
+setGeneric("is.homogeneous", function(object,...) standardGeneric("is.homogeneous"))
 
 setGeneric("setpars", function(object,values,which="pars",...) standardGeneric("setpars"))
 

Modified: pkg/depmixS4/R/depmix-class.R
===================================================================
--- pkg/depmixS4/R/depmix-class.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/depmix-class.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -44,7 +44,7 @@
 	function(object) return(object at nresp)
 )
 
-setMethod("is.stationary",signature(object="mix"),
+setMethod("is.homogeneous",signature(object="mix"),
   function(object) {
 		return(TRUE)
 	}
@@ -223,7 +223,7 @@
 setClass("depmix",
 	representation(transition="list", # transition models (multinomial logistic)
 		trDens="array", # transition densities (A)
-		stationary="logical"
+		homogeneous="logical"
 	),
 	contains="mix"
 )
@@ -256,9 +256,9 @@
 		}
 )
 
-setMethod("is.stationary",signature(object="depmix"),
+setMethod("is.homogeneous",signature(object="depmix"),
   function(object) {
-		return(object at stationary)
+		return(object at homogeneous)
 	}
 )
 
@@ -284,7 +284,7 @@
 		states[bt,] <- simulate(object at prior,nsim=nsim,is.prior=TRUE)
 		sims <- array(,dim=c(nt,ns,nsim))
 		for(i in 1:ns) {
-			if(is.stationary(object)) {
+			if(is.homogeneous(object)) {
 				# TODO: this is a temporary fix!!! 
 				sims[,i,] <- simulate(object at transition[[i]],nsim=nsim,times=rep(1,nt))
 			} else {
@@ -315,7 +315,7 @@
 		
 		object at prior@x <- as.matrix(apply(object at prior@x,2,rep,nsim))
 		for(j in 1:ns) {
-			if(!is.stationary(object)) object at transition[[j]]@x <- as.matrix(apply(object at transition[[j]]@x,2,rep,nsim))
+			if(!is.homogeneous(object)) object at transition[[j]]@x <- as.matrix(apply(object at transition[[j]]@x,2,rep,nsim))
 			for(i in 1:nr) {
 				object at response[[j]][[i]]@y <- as.matrix(responses[[i]])
 				object at response[[j]][[i]]@x <- as.matrix(apply(object at response[[j]][[i]]@x,2,rep,nsim))
@@ -325,7 +325,7 @@
 		
 		# make appropriate array for transition densities
 		nt <- sum(object at ntimes)
-		if(is.stationary(object)) trDens <- array(0,c(1,ns,ns)) else trDens <- array(0,c(nt,ns,ns))
+		if(is.homogeneous(object)) trDens <- array(0,c(1,ns,ns)) else trDens <- array(0,c(nt,ns,ns))
 		
 		# make appropriate array for response densities
 		dns <- array(,c(nt,nr,ns))

Modified: pkg/depmixS4/R/depmix.R
===================================================================
--- pkg/depmixS4/R/depmix.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/depmix.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -35,7 +35,7 @@
     prior <- makePriorModel(nstates = nstates, ncases = length(ntimes), 
         formula = prior, data = initdata, values = instart)
     
-    # call main depmix with all these models, ntimes and stationary
+    # call main depmix with all these models, ntimes and homogeneous
     model <- makeMix(response = response, prior = prior)
         
     return(model)
@@ -77,19 +77,19 @@
         nstates = nstates, family = family, values = respstart)
     
     # make transition models
-    stationary = FALSE
+    homogeneous = FALSE
     if (transition == ~1) 
-        stationary = TRUE
+        homogeneous = TRUE
     transition <- makeTransModels(nstates = nstates, formula = transition, 
-        data = data, stationary = stationary, values = trstart)
+        data = data, homogeneous = homogeneous, values = trstart)
     
     # make prior model
     prior <- makePriorModel(nstates = nstates, ncases = length(ntimes), 
         formula = prior, data = initdata, values = instart)
     
-    # call main depmix with all these models, ntimes and stationary
+    # call main depmix with all these models, ntimes and homogeneous
     model <- makeDepmix(response = response, transition = transition, 
-        prior = prior, ntimes = ntimes, stationary = stationary)
+        prior = prior, ntimes = ntimes, homogeneous = homogeneous)
     
     # deal with starting values here!!!!!!
     

Modified: pkg/depmixS4/R/fb.R
===================================================================
--- pkg/depmixS4/R/fb.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/fb.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -4,7 +4,7 @@
 # FORWARD-BACKWARD algoritme, 23-3-2008
 # 
 
-fb <- function(init,A,B,ntimes=NULL,return.all=FALSE,stationary=TRUE,useC=TRUE,na.allow=TRUE) {
+fb <- function(init,A,B,ntimes=NULL,return.all=FALSE,homogeneous=TRUE,useC=TRUE,na.allow=TRUE) {
 
 	# Forward-Backward algorithm (used in Baum-Welch)
 	# Returns alpha, beta, and full data likelihood
@@ -47,7 +47,7 @@
 		xi <- array(0,dim=c(nt,ns,ns))
 		
 		res <- .C("forwardbackward",
-			hom=as.integer(stationary),
+			hom=as.integer(homogeneous),
 			ns=as.integer(ns),
 			lt=as.integer(lt),
  			nt=as.integer(nt),
@@ -83,7 +83,7 @@
 						
 			if(ntimes[case]>1) {
 				for(i in bt[case]:(et[case]-1)) {
-					if(stationary) alpha[i+1,] <- (A[1,,]%*%alpha[i,])*B[i+1,]
+					if(homogeneous) alpha[i+1,] <- (A[1,,]%*%alpha[i,])*B[i+1,]
 					else alpha[i+1,] <- (A[i,,]%*%alpha[i,])*B[i+1,]
 					sca[i+1] <- 1/sum(alpha[i+1,])
 					alpha[i+1,] <- sca[i+1]*alpha[i+1,]
@@ -94,12 +94,12 @@
 						
 			if(ntimes[case]>1) {
 				for(i in (et[case]-1):bt[case]) {
-					if(stationary) beta[i,] <-(B[i+1,]*beta[i+1,])%*%A[1,,]*sca[i]
+					if(homogeneous) beta[i,] <-(B[i+1,]*beta[i+1,])%*%A[1,,]*sca[i]
 					else beta[i,] <-(B[i+1,]*beta[i+1,])%*%A[i,,]*sca[i]
 				}
 				
 				for(i in bt[case]:(et[case]-1)) {
-					if(stationary) xi[i,,] <- rep(alpha[i,],each=ns)*(B[i+1,]*beta[i+1,]*A[1,,])
+					if(homogeneous) xi[i,,] <- rep(alpha[i,],each=ns)*(B[i+1,]*beta[i+1,]*A[1,,])
 					else xi[i,,] <- rep(alpha[i,],each=ns)*(B[i+1,]*beta[i+1,]*A[i,,])
 				}
 			}

Modified: pkg/depmixS4/R/forwardbackward.R
===================================================================
--- pkg/depmixS4/R/forwardbackward.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/forwardbackward.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -7,14 +7,14 @@
 setMethod("forwardbackward","depmix",
 	function(object, return.all=TRUE, useC=TRUE, ...) {
 		fb(init=object at init,A=object at trDens,B=object at dens,ntimes=ntimes(object), 
-			stationary=object at stationary,return.all=return.all,useC=useC)
+			homogeneous=object at homogeneous,return.all=return.all,useC=useC)
 	}
 )
 
 setMethod("forwardbackward","mix",
 	function(object, return.all=TRUE, useC=TRUE, ...) {
 		fb(init=object at init,matrix(0,1,1),B=object at dens,ntimes=ntimes(object), 
-			stationary=TRUE,return.all=return.all,useC=useC)
+			homogeneous=TRUE,return.all=return.all,useC=useC)
 	}
 )
 

Modified: pkg/depmixS4/R/logLik.R
===================================================================
--- pkg/depmixS4/R/logLik.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/logLik.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -4,8 +4,8 @@
 	function(object,method=c("fb","lystig","classification"),na.allow=TRUE) { 
 	    #4/5/2012: set to fb as this is now in C
 	    method <- match.arg(method)
-		if(method=="fb") ll <- fb(init=object at init,A=object at trDens,B=object at dens,ntimes=object at ntimes,stationary=object at stationary,na.allow=na.allow)$logLike
-		if(method=="lystig") ll <- lystig(init=object at init,A=object at trDens,B=object at dens,ntimes=object at ntimes,stationary=object at stationary)$logLike
+		if(method=="fb") ll <- fb(init=object at init,A=object at trDens,B=object at dens,ntimes=object at ntimes,homogeneous=object at homogeneous,na.allow=na.allow)$logLike
+		if(method=="lystig") ll <- lystig(init=object at init,A=object at trDens,B=object at dens,ntimes=object at ntimes,homogeneous=object at homogeneous)$logLike
 		if(method=="classification") {
 		    ns <- nstates(object)
 		    ntimes <- ntimes(object)
@@ -33,11 +33,11 @@
 	#function(object,method="lystig") { 
 	function(object,method=c("fb","lystig","classification"),na.allow=TRUE) {
 	    method <- match.arg(method)
-		if(method=="fb") ll <- fb(init=object at init,A=matrix(0,1,1),B=object at dens,ntimes=object at ntimes,stationary=TRUE)$logLike
-		if(method=="lystig") ll <- lystig(init=object at init,A=matrix(0,1,1),B=object at dens,ntimes=object at ntimes,stationary=TRUE)$logLike
+		if(method=="fb") ll <- fb(init=object at init,A=matrix(0,1,1),B=object at dens,ntimes=object at ntimes,homogeneous=TRUE)$logLike
+		if(method=="lystig") ll <- lystig(init=object at init,A=matrix(0,1,1),B=object at dens,ntimes=object at ntimes,homogeneous=TRUE)$logLike
 		if(method=="classification") {
 		    ntimes <- ntimes(object)
-		    gamma <- fb(init=object at init,A=matrix(0,1,1),B=object at dens,ntimes=ntimes,stationary=TRUE)$gamma
+		    gamma <- fb(init=object at init,A=matrix(0,1,1),B=object at dens,ntimes=ntimes,homogeneous=TRUE)$gamma
 		    vstate <- t(apply(gamma,1,ind.max))
 		    B <- object at dens
 		    if(na.allow) B[is.na(B)] <- 1

Modified: pkg/depmixS4/R/lystig.R
===================================================================
--- pkg/depmixS4/R/lystig.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/lystig.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -4,7 +4,7 @@
 # LYSTIG algoritme voor de loglikelihood, 23-3-2008
 # 
 
-lystig <- function(init,A,B,ntimes=NULL,stationary=TRUE,na.allow=TRUE) {
+lystig <- function(init,A,B,ntimes=NULL,homogeneous=TRUE,na.allow=TRUE) {
 
 	# Log likelihood computation according to Lystig & Hughes (2002).  This
 	# is very similar to the Forward part of the Forward-Backward algorithm
@@ -43,7 +43,7 @@
 			sca[bt[case]] <- 1/sum(phi[bt[case],])
 			if(ntimes[case]>1) {
 				for(i in (bt[case]+1):et[case]) {
-					if(stationary) phi[i,] <- (A[1,,]%*%phi[i-1,])*B[i,]
+					if(homogeneous) phi[i,] <- (A[1,,]%*%phi[i-1,])*B[i,]
 					else phi[i,] <- (A[i-1,,]%*%phi[i-1,])*B[i,]
 					phi[i,] <- sca[i-1]*phi[i,]
 					sca[i] <- 1/sum(phi[i,])
@@ -60,7 +60,7 @@
 		phi[1,] <- init[1,]*B[1,] # initialize
 		sca[1] <- 1/sum(phi[1,])
 		for(i in 2:nt) {
-			if(stationary) phi[i,] <- (A[1,,]%*%phi[i-1,])*B[i,]
+			if(homogeneous) phi[i,] <- (A[1,,]%*%phi[i-1,])*B[i,]
 			else phi[i,] <- (A[i-1,,]%*%phi[i-1,])*B[i,]			
 			phi[i,] <- sca[i-1]*phi[i,]
 			sca[i] <- 1/sum(phi[i,])

Modified: pkg/depmixS4/R/makeDepmix.R
===================================================================
--- pkg/depmixS4/R/makeDepmix.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/makeDepmix.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -42,8 +42,15 @@
 # this function is probably not ever called by users
 
 makeDepmix <-
-function(response, transition, prior, ntimes=NULL, stationary=TRUE, ...) {
-		
+function(response, transition, prior, ntimes=NULL, homogeneous=TRUE, stationary=NULL, ...) {	
+	
+	if(!(is.null(stationary))) {
+			homogeneous <- stationary
+			warning("Argument 'stationary' has been replaced by argument 'homogeneous' in 
+					version 1.3-0. In future versions argument 'stationary' will most likely be
+					used for other purposes.")
+	}
+	
 	nstates <- length(response)
 	nresp <- length(response[[1]])
 	
@@ -61,7 +68,7 @@
 	
 	# make appropriate array for transition densities
 	nt <- sum(ntimes)
-	if(stationary) trDens <- array(0,c(1,nstates,nstates))
+	if(homogeneous) trDens <- array(0,c(1,nstates,nstates))
 	else trDens <- array(0,c(nt,nstates,nstates))
 	
 	# make appropriate array for response densities
@@ -82,7 +89,7 @@
 	if(!(dim(init)[1]==length(ntimes))) stop("Argument 'ntimes' does not agree with dimension of prior model.")
 	
 	new("depmix",response=response,transition=transition,prior=prior,
-		dens=dens,trDens=trDens,init=init,stationary=stationary,
+		dens=dens,trDens=trDens,init=init,homogeneous=homogeneous,
 		ntimes=ntimes,nstates=nstates,nresp=nresp,npars=npars)
 	
 }

Modified: pkg/depmixS4/R/makeTransModels.R
===================================================================
--- pkg/depmixS4/R/makeTransModels.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/makeTransModels.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -1,12 +1,12 @@
 makeTransModels <-
-function(nstates,formula=~1,data=NULL,stationary,values=NULL, ...) {
+function(nstates,formula=~1,data=NULL,homogeneous,values=NULL, ...) {
 	
 	# defaults that possibly need some work at some point 
 	# FIX ME
 	base=1
 	prob=TRUE
 	
-	if(!stationary&is.null(data)) stop("non-stationary transition models needs data argument")
+	if(!homogeneous&is.null(data)) stop("non-homogeneous transition models needs data argument")
 	
 	# starting values	
 	tst <- FALSE
@@ -18,10 +18,10 @@
 	models <- list()
 	for(i in 1:nstates) {
 		if(tst) {
-			if(stationary) models[[i]] <- transInit(formula,multinomial(link="identity"),data=data.frame(1),nstates=nstates,pstart=values[i,],prob=prob)
+			if(homogeneous) models[[i]] <- transInit(formula,multinomial(link="identity"),data=data.frame(1),nstates=nstates,pstart=values[i,],prob=prob)
 			else models[[i]] <- transInit(formula,multinomial(base=base),data=data,nstates=nstates,pstart=values[i,],prob=prob)
 		} else {
-			if(stationary) models[[i]] <- transInit(formula,multinomial(link="identity"),data=data.frame(1),nstates=nstates,prob=FALSE)
+			if(homogeneous) models[[i]] <- transInit(formula,multinomial(link="identity"),data=data.frame(1),nstates=nstates,prob=FALSE)
 			else models[[i]] <- transInit(formula,multinomial(base=base),data=data,nstates=nstates,prob=FALSE)
 		}
 	}

Modified: pkg/depmixS4/R/transInit.R
===================================================================
--- pkg/depmixS4/R/transInit.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/transInit.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -186,7 +186,7 @@
 			return(states)
 		} else {
 			if(missing(times)) {
-				# this is likely to be a stationary model...???
+				# this is likely to be a homogeneous model...???
 				pr <- predict(object)
 			} else {
 				pr <- predict(object)[times,]

Modified: pkg/depmixS4/R/viterbi.R
===================================================================
--- pkg/depmixS4/R/viterbi.R	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/R/viterbi.R	2013-09-13 14:25:31 UTC (rev 589)
@@ -31,7 +31,7 @@
 		if(object at ntimes[case]>1) {
 			for(tt in ((bt[case]+1):et[case])) {
 				for(j in 1:ns) {
-					if(!object at stationary) {
+					if(!object at homogeneous) {
 						delta[tt,j] <- max(delta[tt-1,]*(A[tt,j,]))*B[tt,j]
 						k <- which.max(delta[tt-1,]*A[tt,j,])
 					} else {

Modified: pkg/depmixS4/inst/doc/depmixS4.Rnw
===================================================================
--- pkg/depmixS4/inst/doc/depmixS4.Rnw	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/inst/doc/depmixS4.Rnw	2013-09-13 14:25:31 UTC (rev 589)
@@ -1069,7 +1069,7 @@
 the model: 
 <<>>=
 mod <- makeDepmix(response = rModels, transition = transition,
-  prior = inMod, stat = FALSE)
+  prior = inMod, homogeneous = FALSE)
 fm <- fit(mod, verbose = FALSE, emc=em.control(rand=FALSE))
 @
 

Modified: pkg/depmixS4/man/depmix-class.Rd
===================================================================
--- pkg/depmixS4/man/depmix-class.Rd	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/man/depmix-class.Rd	2013-09-13 14:25:31 UTC (rev 589)
@@ -38,7 +38,7 @@
 	\item{\code{init}:}{Array of dimension \code{length(ntimes)}*nstates with 
 		the current predictions for the initial state probabilities.}
 	
-	\item{\code{stationary}:}{Logical indicating whether the transitions are
+	\item{\code{homogeneous}:}{Logical indicating whether the transitions are
 		time-dependent or not; for internal use.}
 	
 	\item{\code{ntimes}:}{A vector containing the lengths of independent time

Modified: pkg/depmixS4/man/depmix.sim-class.Rd
===================================================================
--- pkg/depmixS4/man/depmix.sim-class.Rd	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/man/depmix.sim-class.Rd	2013-09-13 14:25:31 UTC (rev 589)
@@ -37,7 +37,7 @@
 	\item{\code{init}:}{Array of dimension \code{length(ntimes)}*nstates with 
 		the current predictions for the initial state probabilities.}
 	
-	\item{\code{stationary}:}{Logical indicating whether the transitions are
+	\item{\code{homogeneous}:}{Logical indicating whether the transitions are
 		time-dependent or not; for internal use.}
 	
 	\item{\code{ntimes}:}{A vector containing the lengths of independent time

Modified: pkg/depmixS4/man/makeDepmix.Rd
===================================================================
--- pkg/depmixS4/man/makeDepmix.Rd	2013-09-12 09:36:21 UTC (rev 588)
+++ pkg/depmixS4/man/makeDepmix.Rd	2013-09-13 14:25:31 UTC (rev 589)
@@ -20,8 +20,8 @@
 
 \usage{
 	
-	makeDepmix(response, transition, prior, ntimes = NULL, stationary = TRUE, 
-    ...) 	
+	makeDepmix(response, transition, prior, ntimes = NULL, homogeneous = TRUE, 
+		stationary = NULL, ...) 	
 	
 }
 
@@ -41,10 +41,17 @@
 		independent, time series. If not specified, the responses are
 		assumed to form a single time series.}
 	
-	\item{stationary}{Logical indicating whether the transition models
+	\item{homogeneous}{Logical indicating whether the transition models
 		include time-varying covariates; used internally to determine the
 		dimensions of certain arrays, notably \code{trDens}.}
 		
+	\item{stationary}{This argument should no longer be used; if not NULL,
+		the value of stationary is copied to the homogeneous argument, with a
+		warning.  In future versions this argument may be dropped or used for
+		different purposes, i.e., for specifying models in which the initial state
+		probabilities are constrained to be the stationary distribution of the
+		transition matrix.}
+		
 	\item{...}{Not used currently.}
 		
 }
@@ -112,7 +119,7 @@
 transition[[2]] <- transInit(~Pacc,nstates=2,data=speed)
 
 inMod <- transInit(~1,ns=2,data=data.frame(rep(1,3)),family=multinomial("identity"))
-mod <- makeDepmix(response=rModels,transition=transition,prior=inMod,ntimes=c(168,134,137),stationary=FALSE)
+mod <- makeDepmix(response=rModels,transition=transition,prior=inMod,ntimes=c(168,134,137),homogeneous=FALSE)
 
 set.seed(3)
 fm1 <- fit(mod)
@@ -288,7 +295,7 @@
 instart=c(0.5,0.5)
 inMod <- transInit(~1,ns=2,ps=instart,data=data.frame(rep(1,3)))
 
-mod <- makeDepmix(response=rModels,transition=transition,prior=inMod,ntimes=c(168,134,137),stat=FALSE)
+mod <- makeDepmix(response=rModels,transition=transition,prior=inMod,ntimes=c(168,134,137),homogeneous=FALSE)
 
 fm3 <- fit(mod,emc=em.control(rand=FALSE))
 summary(fm3,compact=FALSE)



More information about the depmix-commits mailing list