[Depmix-commits] r517 - pkg/depmixS4/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Jun 12 16:31:23 CEST 2012
Author: ingmarvisser
Date: 2012-06-12 16:31:19 +0200 (Tue, 12 Jun 2012)
New Revision: 517
Modified:
pkg/depmixS4/man/em.control.Rd
Log:
Updated help page of em.control to explain the procedure for generating starting values using the Dirichlet distribution.
Modified: pkg/depmixS4/man/em.control.Rd
===================================================================
--- pkg/depmixS4/man/em.control.Rd 2012-06-12 13:14:18 UTC (rev 516)
+++ pkg/depmixS4/man/em.control.Rd 2012-06-12 14:31:19 UTC (rev 517)
@@ -31,24 +31,35 @@
The argument \code{crit} sets the convergence criterion to either the
relative change in the log-likelihood or the absolute change in the
log-likelihood. The relative likelihood criterion (the default) assumes
-convergence on iteration \eqn{i}{i} when \eqn{\frac{\log L(i) - \log
-L(i-1)}{\log L(i-1)} < tol}{\frac{\log L(i) - \log L(i-1)}{\log L(i-1)} <
-tol}. The absolute likelihood criterion assumes convergence on iteration
-\eqn{i}{i} when \eqn{\log L(i) - \log L(i-1) < tol}{(logLik(i) -
-logLik(i-1)) < tol}. Use \code{crit="absolute"} to invoke the latter
+convergence on iteration \eqn{i}{i} when
+\eqn{\frac{\log L(i) - \log L(i-1)}{\log L(i-1)} < tol}{ (log L(i) - log L(i-1))/(log L(i-1)) < tol}.
+The absolute likelihood criterion assumes convergence on iteration
+\eqn{i}{i} when \eqn{\log L(i) - \log L(i-1) < tol}{(log L(i) - log L(i-1)) < tol}.
+Use \code{crit="absolute"} to invoke the latter
convergence criterion. Note that in that case, optimal values of the
-tolerance parameter \code{tol} scale with the value of the log-likelihood.
+tolerance parameter \code{tol} scale with the value of the log-likelihood (and these are not changed automagically).
Argument \code{random.start} This is used for a (limited) random
initialization of the parameters. In particular, if
\code{random.start=TRUE}, the (posterior) state probabilities are
-randomized at iteration 0 (using a uniform distribution). Random
-initialization is useful when no initial parameters can be given to
-distinguish between the states. It is also useful for repeated estimation
-from different starting values.
+randomized at iteration 0 (using a uniform distribution), i.e. the
+\eqn{\gamma} variables (Rabiner, 1989) are sampled from the Dirichlet
+distribution with a (currently fixed) value of
+\eqn{\alpha=0.1}; this results in values for each row of \eqn{\gamma}
+that are quite close to zero and one; note that when these values are
+chosen at zero and one, the initialization is similar to that used in
+\code{kmeans}. Random initialization is useful when no initial parameters can be
+given to distinguish between the states. It is also useful for repeated
+estimation from different starting values.
}
+\references{
+ Lawrence R. Rabiner (1989). A tutorial on hidden Markov models and
+ selected applications in speech recognition. \emph{Proceedings of
+ IEEE}, 77-2, p. 267-295.
+}
+
\value{
\code{em.control} returns a list of the control parameters.
More information about the depmix-commits
mailing list