[Depmix-commits] r423 - papers/jss
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Thu Jul 1 00:20:39 CEST 2010
Author: ingmarvisser
Date: 2010-07-01 00:20:39 +0200 (Thu, 01 Jul 2010)
New Revision: 423
Modified:
papers/jss/dpx4.sh
papers/jss/dpx4Rev.Rnw
Log:
Minor edits to conform to jss standards
Modified: papers/jss/dpx4.sh
===================================================================
--- papers/jss/dpx4.sh 2010-06-30 15:12:37 UTC (rev 422)
+++ papers/jss/dpx4.sh 2010-06-30 22:20:39 UTC (rev 423)
@@ -4,7 +4,7 @@
R --vanilla < dpx4Sweave.R ;
-R --vanilla < dpx4SweaveNoEval.R ;
+# R --vanilla < dpx4SweaveNoEval.R ;
R --vanilla < dpx4Stangle.R ;
@@ -22,7 +22,9 @@
+# R CMD Sweave file.Rnw
+
Modified: papers/jss/dpx4Rev.Rnw
===================================================================
--- papers/jss/dpx4Rev.Rnw 2010-06-30 15:12:37 UTC (rev 422)
+++ papers/jss/dpx4Rev.Rnw 2010-06-30 22:20:39 UTC (rev 423)
@@ -94,14 +94,14 @@
\begin{document}
-
%set width of figures produced by Sweave
\setkeys{Gin}{width=0.9\textwidth}
\maketitle
-<<echo=FALSE>>=
+<<echo=FALSE,results=hide>>=
.Options$digits<-3
+options(continue="+ ",width=70,useFancyQuotes=FALSE)
library(depmixS4)
@
@@ -184,7 +184,7 @@
\citet{Dutilh2010}, and in the next section a number of example models
for these data is described.
-\begin{figure}[htbp]
+\begin{figure}[!Htbp]
\begin{center}
<<fig=TRUE,echo=FALSE,height=5,width=7,eps=FALSE>>=
data(speed)
@@ -308,7 +308,7 @@
Parameters are estimated in \pkg{depmixS4} using the EM algorithm or
through the use of a general Newton-Raphson optimizer. In the EM
-algorithm, parameters are estimated by iteratively maximising the
+algorithm, parameters are estimated by iteratively maximizing the
expected joint log-likelihood of the parameters given the observations and
states. Let $\greekv{\theta} = (\greekv{\theta}_1,
\greekv{\theta}_2,\greekv{\theta}_3)$ be the general parameter vector
@@ -344,15 +344,15 @@
j|\vc{O}_{1:T}, \vc{z}_{1:T},\greekv{\theta}')$ and $\gamma_t(j) =
P(S_t = j|\vc{O}_{1:T}, \vc{z}_{1:T},\greekv{\theta}')$ can be
computed effectively by the forward-backward algorithm \citep[see
-e.g.,][]{Rabiner1989}. The Maximisation step consists of the
-maximisation of (\ref{eq:Q}) for $\greekv{\theta}$. As the right hand
-side of (\ref{eq:Q}) consists of three separate parts, we can maximise
+e.g.,][]{Rabiner1989}. The Maximization step consists of the
+maximization of (\ref{eq:Q}) for $\greekv{\theta}$. As the right hand
+side of (\ref{eq:Q}) consists of three separate parts, we can maximize
separately for $\greekv{\theta}_1$, $\greekv{\theta}_2$ and
-$\greekv{\theta}_3$. In common models, maximisation for
+$\greekv{\theta}_3$. In common models, maximization for
$\greekv{\theta}_1$ and $\greekv{\theta}_2$ is performed by the
\code{nnet.default} routine in the \pkg{nnet} package
-\citep{Venables2002}, and maximisation for $\greekv{\theta}_3$ by the
-standard \code{glm} routine. Note that for the latter maximisation,
+\citep{Venables2002}, and maximization for $\greekv{\theta}_3$ by the
+standard \code{glm} routine. Note that for the latter maximization,
the expected values $\gamma_t(j)$ are used as prior weights of the
observations $O^k_t$.
@@ -577,8 +577,8 @@
<<>>=
set.seed(1)
mod <- depmix(list(rt~1,corr~1), data=speed, nstates=2,
- family=list(gaussian(),multinomial("identity")),
- transition=~scale(Pacc),instart=runif(2))
+ family=list(gaussian(), multinomial("identity")),
+ transition=~scale(Pacc),instart=runif(2))
fm <- fit(mod,verbose=FALSE)
@
@@ -699,12 +699,12 @@
published in \citet{Jansen2002}. Before specifying specifying a model
for these data, we briefly describe them.
-The balance scale taks is a famous task for testing cognitive
+The balance scale task is a famous task for testing cognitive
strategies developed by Jean Piaget \citep[see][]{Siegler1981}.
Figure~\ref{fig:balance} provides an example of a balance scale item.
Participants' task is to say to which side the balance will tip when
released, or alternatively, whether it will stay in balance. The item
-shown in Figure~\ref{fig:balance} is a so-callled distance item: the
+shown in Figure~\ref{fig:balance} is a so-called distance item: the
number of weights placed on each side is equal, and only the distance
of the weights to the fulcrum differs between each side.
@@ -834,7 +834,7 @@
\begin{enumerate}
\item y: the response variable
\item x: the design matrix, possibly only an intercept
- \item paramaters: a named list with the coefficients and possibly
+ \item parameters: a named list with the coefficients and possibly
other parameters (e.g., the standard deviation in the Gaussian
response model)
\item fixed: a vector of logicals indicating whether parameters are
@@ -966,8 +966,8 @@
y <- object at y
fit <- gamlss(y~1,weights=w,family=exGAUS(),
control=gamlss.control(n.cyc=100,trace=FALSE),
- mu.start=object at parameters$mu,
- sigma.start=exp(object at parameters$sigma),
+ mu.start=object at parameters$mu,
+ sigma.start=exp(object at parameters$sigma),
nu.start=exp(object at parameters$nu))
pars <- c(fit$mu.coefficients,fit$sigma.coefficients,fit$nu.coefficients)
object <- setpars(object,pars)
@@ -1051,7 +1051,7 @@
(NEST). Maarten Speekenbrink was supported by ESRC grant
RES-062-23-1511 and the ESRC Centre for Economic Learning and Social
Evolution (ELSE). Han van der Maas provided the speed-accuracy data
-\citep{Dutilh2010} and thereby neccessitated implementing models with
+\citep{Dutilh2010} and thereby necessitated implementing models with
time-dependent covariates. Brenda Jansen provided the balance scale
data set \citep{Jansen2002} which was the perfect opportunity to test
the covariates on the prior model parameters. The examples in the
More information about the depmix-commits
mailing list