[datatable-help] svm e1071 call - different results
agent dunham
crosspide at hotmail.com
Thu Jun 29 15:56:04 CEST 2017
Dear community,
I don't know which is the proper call for svm at e1071, as I'm obtaining
really different results when predicting.
Find attached my data.
This is what I'm trying:
*TYPE1*
mod = svm(train[, 8] ~ . , data= train)
pred.svm <- predict (mod, train)
error.svm <- train$revenues - pred.svm
pred.svm.test <- predict (mod, test)
svmPredictionRMSE <- rmse(error.svm)
/*0.05239259*/
error.svm.test <- test$revenues - pred.svm.test
svmPredictionRMSE.test <- rmse(error.svm.test)
/*0.06932511*/
*TYPE2*
mod.1 = svm(train[, -8] , train[, 8])
pred.1.svm <- predict (mod.1, train[, -8])
error.1.svm <- train$revenues - pred.1.svm
rmse(error.1.svm)
/*0.3695311*/
pred.1.svm.test <- predict (mod.1, test[, -8])
error.1.svm.test <- test$revenues - pred.1.svm.test
rmse(error.1.svm.test)
/*0.412292*/
train.txt <http://r.789695.n4.nabble.com/file/n4740595/train.txt>
test.txt <http://r.789695.n4.nabble.com/file/n4740595/test.txt>
And rmse:
function(error)
{
sqrt(mean(error^2, na.rm= TRUE))
}
I also tried:
mod2 = svm(formula = train1[, 8] ~ as.matrix(train1[, -8]), data = train)
If this is correct, how do I have to write the corresponding predict?
Thanks in advance,
--
View this message in context: http://r.789695.n4.nabble.com/svm-e1071-call-different-results-tp4740595.html
Sent from the datatable-help mailing list archive at Nabble.com.
More information about the datatable-help
mailing list