[CHNOSZ-commits] r570 - in pkg/CHNOSZ: . R inst man vignettes

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jul 21 04:13:10 CEST 2020


Author: jedick
Date: 2020-07-21 04:13:09 +0200 (Tue, 21 Jul 2020)
New Revision: 570

Added:
   pkg/CHNOSZ/R/flatten.R
   pkg/CHNOSZ/man/flatten.Rd
Removed:
   pkg/CHNOSZ/R/combine.R
   pkg/CHNOSZ/man/combine.Rd
Modified:
   pkg/CHNOSZ/DESCRIPTION
   pkg/CHNOSZ/NAMESPACE
   pkg/CHNOSZ/inst/NEWS.Rd
   pkg/CHNOSZ/vignettes/mklinks.sh
   pkg/CHNOSZ/vignettes/multi-metal.Rmd
Log:
Rename combine() to flatten()


Modified: pkg/CHNOSZ/DESCRIPTION
===================================================================
--- pkg/CHNOSZ/DESCRIPTION	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/DESCRIPTION	2020-07-21 02:13:09 UTC (rev 570)
@@ -1,6 +1,6 @@
 Date: 2020-07-21
 Package: CHNOSZ
-Version: 1.3.6-43
+Version: 1.3.6-44
 Title: Thermodynamic Calculations and Diagrams for Geochemistry
 Authors at R: c(
     person("Jeffrey", "Dick", , "j3ffdick at gmail.com", role = c("aut", "cre"),

Modified: pkg/CHNOSZ/NAMESPACE
===================================================================
--- pkg/CHNOSZ/NAMESPACE	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/NAMESPACE	2020-07-21 02:13:09 UTC (rev 570)
@@ -59,7 +59,7 @@
   "CHNOSZ", "thermo", "reset", "OBIGT", "retrieve", "AkDi", "moles",
   "lNaCl", "lS", "lT", "lP", "lTP", "lex",
 # added 20200716 or later
-  "duplex", "combine"
+  "duplex", "flatten"
 )
 
 # Load shared objects

Deleted: pkg/CHNOSZ/R/combine.R
===================================================================
--- pkg/CHNOSZ/R/combine.R	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/R/combine.R	2020-07-21 02:13:09 UTC (rev 570)
@@ -1,138 +0,0 @@
-# CHNOSZ/duplex.R
-# Combine diagrams for two metals
-# 20200713 first version jmd
-
-# Function to combine two diagrams (simple overlay, no interaction) 20200717
-# -- makes new "species" from all combinations of those in d1 and d2
-combine <- function(d1, d2) {
-  check_d1_d2(d1, d2)
-
-  # Index all combinations of species in d1 and d2
-  i1 <- 1:nrow(d1$species)
-  i2 <- 1:nrow(d2$species)
-  combs <- expand.grid(i1, i2)
-
-  # Get species rows for each combination
-  s1 <- d1$species[combs[, 1], ]
-  s2 <- d2$species[combs[, 2], ]
-  # Make a new species data frame
-  nbasis <- nrow(d1$basis)
-  species <- s1[, 1:nbasis] + s2[, 1:nbasis]
-  ispecies <- paste(s1$ispecies, s2$ispecies, sep = ",")
-  logact <- paste(s1$logact, s2$logact, sep = ",")
-  state <- paste(s1$state, s2$state, sep = ",")
-  # Use names from diagram()
-  if(is.expression(d1$names) & is.expression(d2$names)) {
-    name <- lapply(1:nrow(combs), function(i) bquote(.(d1$names[[combs[i, 1]]])+.(d2$names[[combs[i, 2]]])))
-    name <- unlist(lapply(name, deparse, width.cutoff = 500, control = NULL))
-  } else if(is.expression(d1$names)) {
-    name <- lapply(1:nrow(combs), function(i) bquote(.(d1$names[[combs[i, 1]]])+.(d2$names[combs[i, 2]])))
-    name <- unlist(lapply(name, deparse, width.cutoff = 500, control = NULL))
-  } else if(is.expression(d2$names)) {
-    name <- lapply(1:nrow(combs), function(i) bquote(.(d1$names[combs[i, 1]])+.(d2$names[[combs[i, 2]]])))
-    name <- unlist(lapply(name, deparse, width.cutoff = 500, control = NULL))
-  } else name <- paste(d1$names[combs[, 1]], d2$names[combs[, 2]], sep="+")
-  if(length(name) != nrow(combs)) stop("deparse()-ing expressions gives unequal length; try diagram(., format.names = FALSE)")
-  species <- cbind(species, ispecies, logact, state, name)
-
-  # Get affinities for each combination
-  v1 <- d1$values[combs[, 1]]
-  v2 <- d2$values[combs[, 2]]
-  values <- Map("+", v1, v2)
-  # Assign -Inf affinity where a species isn't predominant
-  for(i in seq_along(values)) {
-    i1 <- combs[i, 1]
-    i2 <- combs[i, 2]
-    ip1 <- d1$predominant == i1
-    ip2 <- d2$predominant == i2
-    ip12 <- ip1 & ip2
-    values[[i]][!ip12] <- -Inf
-  }
-
-  # Use d1 as a template for the new affinity object
-  anew <- d1[1:11]
-  # Insert combined results
-  anew$species <- species
-  anew$values <- values
-  # We don't have sout (results from subcrt()) for the combined "species"
-  anew$sout <- NULL
-  anew
-}
-
-# Function to make a new "affinity" object from two diagrams 20200713
-# -- uses *secondary* balancing coefficients to combine the diagrams
-duplex <- function(d1, d2, balance = NULL) {
-  check_d1_d2(d1, d2)
-
-  # Combine the species data frames
-  species <- rbind(d1$species, d2$species)
-  # Combine the sout objects (results from subcrt())
-  only2 <- !d2$sout$species$ispecies %in% d1$sout$species$ispecies
-  sout <- d1$sout
-  sout$species <- rbind(sout$species, d2$sout$species[only2, ])
-  sout$out <- c(sout$out, d2$sout$out[only2])
-  # Combine the affinity values divided by the *primary*
-  # balancing coefficients ("plotvals" from diagram())
-  values <- c(d1$plotvals, d2$plotvals)
-
-  # Use d1 as a template for the new affinity object
-  anew <- d1[1:11]
-  # Insert combined results
-  anew$species <- species
-  anew$sout <- sout
-  anew$values <- values
-
-  # Figure out the *secondary* balancing coefficients
-  n.balance <- balance(anew, balance = balance)$n.balance
-  # In the Fe-Cu-S-O-H example all the coefficients on H+ are negative
-  if(all(n.balance < 0)) n.balance <- -n.balance
-  n1 <- nrow(d1$species)
-  n.balance.1 <- n.balance[1:n1]
-  n.balance.2 <- n.balance[(n1+1):length(n.balance)]
-
-  # Make empty matrices to hold affinities and balancing coefficients
-  a1 <- d1$values[[1]]
-  a1[] <- NA
-  b2 <- a2 <- b1 <- a1
-  # Get the affinities (per mole of species, not divided by any balancing coefficients)
-  # and the secondary balancing coefficients for the predominant species in each diagram
-  p1 <- d1$predominant
-  for(ip in unique(as.vector(p1))) {
-    a1[p1 == ip] <- d1$values[[ip]][p1 == ip]
-    b1[p1 == ip] <- n.balance.1[ip]
-  }
-  p2 <- d2$predominant
-  for(ip in unique(as.vector(p2))) {
-    a2[p2 == ip] <- d2$values[[ip]][p2 == ip]
-    b2[p2 == ip] <- n.balance.2[ip]
-  }
-  # Divide the affinities by the secondary balancing coefficients
-  ab1 <- a1 / b1
-  ab2 <- a2 / b2
-  # Identify the species with the highest affinity (predominant in the *secondary* reactions)
-  i1 <- ab1 > ab2
-  # Suppress non-predominant species at each grid point
-  for(i in 1:n1) anew$values[[i]][!i1] <- -Inf
-  for(i in (n1+1):length(n.balance)) anew$values[[i]][i1] <- -Inf
-
-  anew
-
-}
-
-### unexported function ###
-
-# Check that d1 and d2 can be combined
-# Extracted from duplex() 20200717
-check_d1_d2 <- function(d1, d2) {
-  # Check that the basis species are the same
-  if(!identical(d1$basis, d2$basis)) stop("basis species in objects 'd1' and 'd2' are not identical")
-  # Check that the variables and their values are the same
-  if(!identical(d1$vars, d2$vars)) stop("variable names in objects 'd1' and 'd2' are not identical")
-  if(!identical(d1$vals, d2$vals)) stop("variable values in objects 'd1' and 'd2' are not identical")
-  # Check that T and P are the same
-  if(!identical(d1$T, d2$T)) stop("temperatures in objects 'd1' and 'd2' are not identical")
-  if(!identical(d1$P, d2$P)) stop("pressures in objects 'd1' and 'd2' are not identical")
-  # Check that we have plotvals and predominant (from diagram())
-  if(is.null(d1$plotvals) | is.null(d1$predominant)) stop("object 'd1' is missing 'plotvals' or 'predominant' components (not made by diagram()?)")
-  if(is.null(d2$plotvals) | is.null(d2$predominant)) stop("object 'd2' is missing 'plotvals' or 'predominant' components (not made by diagram()?)")
-}

Copied: pkg/CHNOSZ/R/flatten.R (from rev 569, pkg/CHNOSZ/R/combine.R)
===================================================================
--- pkg/CHNOSZ/R/flatten.R	                        (rev 0)
+++ pkg/CHNOSZ/R/flatten.R	2020-07-21 02:13:09 UTC (rev 570)
@@ -0,0 +1,138 @@
+# CHNOSZ/flatten.R
+# Combine diagrams for two metals
+# 20200713 first version jmd
+
+# Function to combine two diagrams (simple overlay, no interaction) 20200717
+# -- makes new "species" from all combinations of those in d1 and d2
+flatten <- function(d1, d2) {
+  check_d1_d2(d1, d2)
+
+  # Index all combinations of species in d1 and d2
+  i1 <- 1:nrow(d1$species)
+  i2 <- 1:nrow(d2$species)
+  combs <- expand.grid(i1, i2)
+
+  # Get species rows for each combination
+  s1 <- d1$species[combs[, 1], ]
+  s2 <- d2$species[combs[, 2], ]
+  # Make a new species data frame
+  nbasis <- nrow(d1$basis)
+  species <- s1[, 1:nbasis] + s2[, 1:nbasis]
+  ispecies <- paste(s1$ispecies, s2$ispecies, sep = ",")
+  logact <- paste(s1$logact, s2$logact, sep = ",")
+  state <- paste(s1$state, s2$state, sep = ",")
+  # Use names from diagram()
+  if(is.expression(d1$names) & is.expression(d2$names)) {
+    name <- lapply(1:nrow(combs), function(i) bquote(.(d1$names[[combs[i, 1]]])+.(d2$names[[combs[i, 2]]])))
+    name <- unlist(lapply(name, deparse, width.cutoff = 500, control = NULL))
+  } else if(is.expression(d1$names)) {
+    name <- lapply(1:nrow(combs), function(i) bquote(.(d1$names[[combs[i, 1]]])+.(d2$names[combs[i, 2]])))
+    name <- unlist(lapply(name, deparse, width.cutoff = 500, control = NULL))
+  } else if(is.expression(d2$names)) {
+    name <- lapply(1:nrow(combs), function(i) bquote(.(d1$names[combs[i, 1]])+.(d2$names[[combs[i, 2]]])))
+    name <- unlist(lapply(name, deparse, width.cutoff = 500, control = NULL))
+  } else name <- paste(d1$names[combs[, 1]], d2$names[combs[, 2]], sep="+")
+  if(length(name) != nrow(combs)) stop("deparse()-ing expressions gives unequal length; try diagram(., format.names = FALSE)")
+  species <- cbind(species, ispecies, logact, state, name)
+
+  # Get affinities for each combination
+  v1 <- d1$values[combs[, 1]]
+  v2 <- d2$values[combs[, 2]]
+  values <- Map("+", v1, v2)
+  # Assign -Inf affinity where a species isn't predominant
+  for(i in seq_along(values)) {
+    i1 <- combs[i, 1]
+    i2 <- combs[i, 2]
+    ip1 <- d1$predominant == i1
+    ip2 <- d2$predominant == i2
+    ip12 <- ip1 & ip2
+    values[[i]][!ip12] <- -Inf
+  }
+
+  # Use d1 as a template for the new affinity object
+  anew <- d1[1:11]
+  # Insert combined results
+  anew$species <- species
+  anew$values <- values
+  # We don't have sout (results from subcrt()) for the combined "species"
+  anew$sout <- NULL
+  anew
+}
+
+# Function to make a new "affinity" object from two diagrams 20200713
+# -- uses *secondary* balancing coefficients to combine the diagrams
+duplex <- function(d1, d2, balance = NULL) {
+  check_d1_d2(d1, d2)
+
+  # Combine the species data frames
+  species <- rbind(d1$species, d2$species)
+  # Combine the sout objects (results from subcrt())
+  only2 <- !d2$sout$species$ispecies %in% d1$sout$species$ispecies
+  sout <- d1$sout
+  sout$species <- rbind(sout$species, d2$sout$species[only2, ])
+  sout$out <- c(sout$out, d2$sout$out[only2])
+  # Combine the affinity values divided by the *primary*
+  # balancing coefficients ("plotvals" from diagram())
+  values <- c(d1$plotvals, d2$plotvals)
+
+  # Use d1 as a template for the new affinity object
+  anew <- d1[1:11]
+  # Insert combined results
+  anew$species <- species
+  anew$sout <- sout
+  anew$values <- values
+
+  # Figure out the *secondary* balancing coefficients
+  n.balance <- balance(anew, balance = balance)$n.balance
+  # In the Fe-Cu-S-O-H example all the coefficients on H+ are negative
+  if(all(n.balance < 0)) n.balance <- -n.balance
+  n1 <- nrow(d1$species)
+  n.balance.1 <- n.balance[1:n1]
+  n.balance.2 <- n.balance[(n1+1):length(n.balance)]
+
+  # Make empty matrices to hold affinities and balancing coefficients
+  a1 <- d1$values[[1]]
+  a1[] <- NA
+  b2 <- a2 <- b1 <- a1
+  # Get the affinities (per mole of species, not divided by any balancing coefficients)
+  # and the secondary balancing coefficients for the predominant species in each diagram
+  p1 <- d1$predominant
+  for(ip in unique(as.vector(p1))) {
+    a1[p1 == ip] <- d1$values[[ip]][p1 == ip]
+    b1[p1 == ip] <- n.balance.1[ip]
+  }
+  p2 <- d2$predominant
+  for(ip in unique(as.vector(p2))) {
+    a2[p2 == ip] <- d2$values[[ip]][p2 == ip]
+    b2[p2 == ip] <- n.balance.2[ip]
+  }
+  # Divide the affinities by the secondary balancing coefficients
+  ab1 <- a1 / b1
+  ab2 <- a2 / b2
+  # Identify the species with the highest affinity (predominant in the *secondary* reactions)
+  i1 <- ab1 > ab2
+  # Suppress non-predominant species at each grid point
+  for(i in 1:n1) anew$values[[i]][!i1] <- -Inf
+  for(i in (n1+1):length(n.balance)) anew$values[[i]][i1] <- -Inf
+
+  anew
+
+}
+
+### unexported function ###
+
+# Check that d1 and d2 can be combined
+# Extracted from duplex() 20200717
+check_d1_d2 <- function(d1, d2) {
+  # Check that the basis species are the same
+  if(!identical(d1$basis, d2$basis)) stop("basis species in objects 'd1' and 'd2' are not identical")
+  # Check that the variables and their values are the same
+  if(!identical(d1$vars, d2$vars)) stop("variable names in objects 'd1' and 'd2' are not identical")
+  if(!identical(d1$vals, d2$vals)) stop("variable values in objects 'd1' and 'd2' are not identical")
+  # Check that T and P are the same
+  if(!identical(d1$T, d2$T)) stop("temperatures in objects 'd1' and 'd2' are not identical")
+  if(!identical(d1$P, d2$P)) stop("pressures in objects 'd1' and 'd2' are not identical")
+  # Check that we have plotvals and predominant (from diagram())
+  if(is.null(d1$plotvals) | is.null(d1$predominant)) stop("object 'd1' is missing 'plotvals' or 'predominant' components (not made by diagram()?)")
+  if(is.null(d2$plotvals) | is.null(d2$predominant)) stop("object 'd2' is missing 'plotvals' or 'predominant' components (not made by diagram()?)")
+}

Modified: pkg/CHNOSZ/inst/NEWS.Rd
===================================================================
--- pkg/CHNOSZ/inst/NEWS.Rd	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/inst/NEWS.Rd	2020-07-21 02:13:09 UTC (rev 570)
@@ -48,8 +48,9 @@
   \subsection{NEW FEATURES}{
     \itemize{
 
-      \item Add function \strong{combine()} for combining diagrams for different
-      systems (i.e., simple overlay with labels for species from both systems).
+      \item Add function \strong{flatten()} for combining two diagrams for
+      different systems (i.e., simple overlay with labels for species from both
+      systems).
 
       \item Add function \strong{duplex()} for making a new diagram by secondary
       balancing between two systems.

Deleted: pkg/CHNOSZ/man/combine.Rd
===================================================================
--- pkg/CHNOSZ/man/combine.Rd	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/man/combine.Rd	2020-07-21 02:13:09 UTC (rev 570)
@@ -1,74 +0,0 @@
-\encoding{UTF-8}
-\name{combine}
-\alias{combine}
-\alias{duplex}
-\title{Combine Diagrams}
-\description{
-  Combine two diagrams for different systems by simple overlay or using a secondary balancing constraint.
-}
-
-\usage{
-  combine(d1, d2)
-  duplex(d1, d2, balance = NULL)
-}
-
-\arguments{
-  \item{d1}{list, output of \code{\link{diagram}} for first system}
-  \item{d2}{list, output of \code{diagram} for second system}
-  \item{balance}{character or numeric, specification of secondary balancing coefficients}
-}
-
-\details{
-
-These functions both make a new \code{\link{affinity}} object from two diagrams.
-In essence, \code{combine} identifies the intersection of predominance fields for all possible combinations of species (without interaction between the systems), while \code{duplex} creates a new diagram by comparing the affinities of reactions between species in both systems.
-Both functions mask the non-predominant species by assigning them -Inf values of affinity, so the result can be used to make a new diagram that shows the combined system.
-
-\code{combine} makes a simple overlay of two diagrams using new "species" generated from all combinations of those in \code{d1} and \code{d2}.
-The new names are formed from the \code{names} used in the source diagrams; for example if "Cp" and "Py" are predominant minerals at the same position in diagrams 1 and 2, the field for the combined diagram will be labeled "Cp+Py".
-The resulting affinities are simply the sum of affinities of the two species; they are assigned values of -Inf wherever one of the species is not predominant in either of the diagrams.
-
-Diagrams for different systems likely use different \emph{primary} balancing coefficients, such as balancing on different metals.
-\code{duplex} uses \emph{secondary} balancing coefficients, specified acording to \code{balance} (see \code{\link{equilibrate}} for a description of this argument), to determine the reactions between the species in the two systems.
-The affinities of these reactions are then used \emph{only} to identify the predominant species at each grid point.
-The \emph{returned} value of affinity are carried forward from those used to make the source diagrams (\samp{plotvals} in \code{d1} and \code{d2}), and therefore reflect the primary balancing coefficients.
-The returned values are assigned -Inf wherever that species is determined to not predominate according to the secondary balancing.
-
-\code{combine} yields finite values of affinity for only a single species at any grid point, the final diagram can be made with any setting of \code{balance}.
-However, for \code{duplex}, \code{balance} in the final diagram should be set to \samp{1} in order to preserve the primary balancing coefficients.
-
-}
-
-\value{
-A list object with the same structure as the output from \code{\link{affinity}}, so it can be used as input to \code{diagram}.
-}
-
-\seealso{
-A longer example is in the vignette \viglink{multi-metal}.
-}
-
-\examples{\dontshow{opar <- par(no.readonly = TRUE)}
-par(mfrow = c(2, 2))
-# Define basis species with Fe and Cu
-basis(c("Fe+2", "Cu+", "hydrogen sulfide", "oxygen", "H2O", "H+"))
-xlab <- ratlab("Fe+2", "Cu+")
-# Calculate diagram for only Fe-bearing minerals
-species(c("pyrite", "pyrrhotite", "magnetite", "hematite"))
-aFe <- affinity("Fe+2" = c(0, 12), O2 = c(-40, -16), T = 400, P = 2000)
-dFe <- diagram(aFe, xlab = xlab, main = "Fe-S-O-H")
-# Calculate diagram for only Cu-bearing minerals
-species(c("covellite", "chalcocite", "tenorite", "cuprite"))
-aCu <- affinity(aFe)  # argument recall
-dCu <- diagram(aCu, xlab = xlab, main = "Cu-S-O-H")
-### combine() diagram
-ac <- combine(dFe, dCu)
-diagram(ac, xlab = xlab, main = "Cu-Fe-S-O-H with combine()")
-### duplex() diagram
-ad <- duplex(dFe, dCu)
-diagram(ad, xlab = xlab, balance = 1, main = "Cu-Fe-S-O-H with duplex()")
-db <- describe.basis(ibasis = 3)
-leg <- lex(lTP(400, 2000), db)
-legend("bottomleft", legend = leg, bty = "n")
-\dontshow{par(opar)}}
-
-\concept{Extended workflow}

Copied: pkg/CHNOSZ/man/flatten.Rd (from rev 569, pkg/CHNOSZ/man/combine.Rd)
===================================================================
--- pkg/CHNOSZ/man/flatten.Rd	                        (rev 0)
+++ pkg/CHNOSZ/man/flatten.Rd	2020-07-21 02:13:09 UTC (rev 570)
@@ -0,0 +1,74 @@
+\encoding{UTF-8}
+\name{flatten}
+\alias{flatten}
+\alias{duplex}
+\title{Combine Diagrams}
+\description{
+  Combine two diagrams for different systems by flattening them or using a secondary balancing constraint.
+}
+
+\usage{
+  flatten(d1, d2)
+  duplex(d1, d2, balance = NULL)
+}
+
+\arguments{
+  \item{d1}{list, output of \code{\link{diagram}} for first system}
+  \item{d2}{list, output of \code{diagram} for second system}
+  \item{balance}{character or numeric, specification of secondary balancing coefficients}
+}
+
+\details{
+
+These functions both make a new \code{\link{affinity}} object from two diagrams.
+\code{flatten} identifies the intersection of predominance fields for all possible combinations of species (without interaction between the systems), while \code{duplex} creates a new diagram by comparing the affinities of reactions between species in both systems.
+Both functions mask the non-predominant species by assigning them -Inf values of affinity, so the result can be used to make a new diagram that shows the combined system.
+
+\code{flatten} makes a simple overlay of two diagrams using new "species" generated from all combinations of those in \code{d1} and \code{d2}.
+The new names are formed from the \code{names} used in the source diagrams; for example if "Cp" and "Py" are predominant minerals at the same position in diagrams 1 and 2, the field for the flattened diagram will be labeled "Cp+Py".
+The resulting affinities are simply the sum of affinities of the two species; they are assigned values of -Inf wherever one of the species is not predominant in either of the diagrams.
+
+Diagrams for different systems likely use different \emph{primary} balancing coefficients, such as balancing on different metals.
+\code{duplex} uses \emph{secondary} balancing coefficients, specified acording to \code{balance} (see \code{\link{equilibrate}} for a description of this argument), to determine the reactions between the species in the two systems.
+The affinities of these reactions are then used \emph{only} to identify the predominant species at each grid point.
+The \emph{returned} value of affinity are carried forward from those used to make the source diagrams (\samp{plotvals} in \code{d1} and \code{d2}), and therefore reflect the primary balancing coefficients.
+The returned values are assigned -Inf wherever that species is determined to not predominate according to the secondary balancing.
+
+Because \code{flatten} yields finite values of affinity for only a single species at any grid point, the final diagram can be made with any setting of \code{balance}.
+However, for \code{duplex}, \code{balance} in the final diagram should be set to \samp{1} in order to preserve the primary balancing coefficients.
+
+}
+
+\value{
+A list object with the same structure as the output from \code{\link{affinity}}, so it can be used as input to \code{diagram}.
+}
+
+\seealso{
+A longer example is in the vignette \viglink{multi-metal}.
+}
+
+\examples{\dontshow{opar <- par(no.readonly = TRUE)}
+par(mfrow = c(2, 2))
+# Define basis species with Fe and Cu
+basis(c("Fe+2", "Cu+", "hydrogen sulfide", "oxygen", "H2O", "H+"))
+xlab <- ratlab("Fe+2", "Cu+")
+# Calculate diagram for only Fe-bearing minerals
+species(c("pyrite", "pyrrhotite", "magnetite", "hematite"))
+aFe <- affinity("Fe+2" = c(0, 12), O2 = c(-40, -16), T = 400, P = 2000)
+dFe <- diagram(aFe, xlab = xlab, main = "Fe-S-O-H")
+# Calculate diagram for only Cu-bearing minerals
+species(c("covellite", "chalcocite", "tenorite", "cuprite"))
+aCu <- affinity(aFe)  # argument recall
+dCu <- diagram(aCu, xlab = xlab, main = "Cu-S-O-H")
+### flatten() diagram
+ac <- flatten(dFe, dCu)
+diagram(ac, xlab = xlab, main = "Cu-Fe-S-O-H with flatten()")
+### duplex() diagram
+ad <- duplex(dFe, dCu)
+diagram(ad, xlab = xlab, balance = 1, main = "Cu-Fe-S-O-H with duplex()")
+db <- describe.basis(ibasis = 3)
+leg <- lex(lTP(400, 2000), db)
+legend("bottomleft", legend = leg, bty = "n")
+\dontshow{par(opar)}}
+
+\concept{Extended workflow}

Modified: pkg/CHNOSZ/vignettes/mklinks.sh
===================================================================
--- pkg/CHNOSZ/vignettes/mklinks.sh	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/vignettes/mklinks.sh	2020-07-21 02:13:09 UTC (rev 570)
@@ -110,9 +110,9 @@
 
 # add links to multi-metal.html 20200716
 sed -i 's/affinity()/<a href="..\/html\/affinity.html">affinity()<\/a>/g' multi-metal.html
-sed -i 's/combine()/<a href="..\/html\/combine.html">combine()<\/a>/g' multi-metal.html
+sed -i 's/flatten()/<a href="..\/html\/flatten.html">flatten()<\/a>/g' multi-metal.html
 sed -i 's/diagram()/<a href="..\/html\/diagram.html">diagram()<\/a>/g' multi-metal.html
 sed -i 's/mosaic()/<a href="..\/html\/mosaic.html">mosaic()<\/a>/g' multi-metal.html
 sed -i 's/equilibrate()/<a href="..\/html\/equilibrate.html">equilibrate()<\/a>/g' multi-metal.html
-sed -i 's/duplex()/<a href="..\/html\/combine.html">duplex()<\/a>/g' multi-metal.html
+sed -i 's/duplex()/<a href="..\/html\/flatten.html">duplex()<\/a>/g' multi-metal.html
 sed -i 's/ratlab()/<a href="..\/html\/util.expression.html">ratlab()<\/a>/g' multi-metal.html

Modified: pkg/CHNOSZ/vignettes/multi-metal.Rmd
===================================================================
--- pkg/CHNOSZ/vignettes/multi-metal.Rmd	2020-07-21 01:42:22 UTC (rev 569)
+++ pkg/CHNOSZ/vignettes/multi-metal.Rmd	2020-07-21 02:13:09 UTC (rev 570)
@@ -74,11 +74,11 @@
 Basic diagrams in CHNOSZ are made for reactions that are *balanced on an element* (see [Equilibrium in CHNOSZ](equilibrium.html)) and therefore represent minerals or aqueous species that all have one element, often a metal, in common.
 The package documentation has many examples of diagrams for a single metal appearing in different minerals or complexed with different ligands, but a common request is to make diagrams for multiple metals.
 This vignette describes some methods for constructing diagrams for multi-metal minerals and other multi-element systems.
-The methods are **simple overlay**, **mosaic series**, and **secondary balancing**.
+The methods are **flattening**, **mosaic series**, and **secondary balancing**.
 
-## Simple Overlay
+## Flattening
 
-Simple overlay refers to independent calculations for two different systems that are displayed on the same diagram.
+Flattening or simple overlay refers to independent calculations for two different systems that are displayed on the same diagram.
 Although it is easy to make such a diagram, there is no interaction between the systems.
 
 This example starts with a log*f*~O<sub>2</sub>~--pH base diagram for the C-O-H system then overlays a diagram for S-O-H.
@@ -86,7 +86,7 @@
 This allows calculations to be run at the same conditions for a different system.
 This feature is also used in other examples in this vignette.
 
-```{r overlay, echo = 1:8, eval = FALSE}
+```{r flatten, echo = 1:8, eval = FALSE}
 par(mfrow = c(1, 2))
 basis("CHNOS+")
 species(c("CH4", "CO2", "HCO3-", "CO3-2"))
@@ -95,14 +95,14 @@
 species(c("H2S", "HS-", "HSO4-", "SO4-2"))
 aS <- affinity(aC)  # argument recall
 dS <- diagram(aS, add = TRUE, col = 4, col.names = 4)
-aCS <- combine(dC, dS)
+aCS <- flatten(dC, dS)
 diagram(aCS)
 legend("topright", legend = lTP(25, 1))
 ```
 
-The second diagram is just like the first, except the function `combine()` is used to label the fields with names of species from both systems and we add a legend to indicate the temperature and pressure.
+The second diagram is just like the first, except the function `flatten()` is used to label the fields with names of species from both systems, and a legend is added to indicate the temperature and pressure.
 
-```{r overlay, echo = 9:11,  results = "hide", message = FALSE, fig.width = 10, fig.height = 5, out.width = "100%"}
+```{r flatten, echo = 9:11,  results = "hide", message = FALSE, fig.width = 10, fig.height = 5, out.width = "100%"}
 ```
 
 Note that these are predominance diagrams, so they show only the species with highest activity; there is in fact a distribution of activities of aqueous species that is not visible here.
@@ -176,7 +176,7 @@
 
 ## Mosaic Series 2
 
-The results of a mosaic series can also processed with `combine()` to label each region with the minerals from both systems.
+The results of a mosaic series can also processed with `flatten()` to label each region with the minerals from both systems.
 For this example, the speciation of aqueous sulfur is not considered.
 
 ```{r series2, results = "hide", message = FALSE, fig.width = 6, fig.height = 4, out.width = "100%", pngquant = pngquant}
@@ -194,8 +194,8 @@
               T = 125, predominant = list(dFe$predominant))
 abbrv <- info(species()$ispecies)$abbrv
 dCu <- diagram(mCu$A.species, names = abbrv)
-# Combine the diagrams and adjust labels
-aFeCu <- combine(dFe, dCu)
+# Flatten the diagrams and adjust labels
+aFeCu <- flatten(dFe, dCu)
 names <- aFeCu$species$name
 srt <- rep(0, length(names))
 srt[names %in% c("Mt+Cu", "Hm+Cu")] <- 90
@@ -289,11 +289,11 @@
 ```
 
 Now comes the secondary balancing, where all reactions, not only that between bornite and chalcopyrite, are balanced on H^+^.
-We first combine the affinities for the Fe- or Cu-bearing minerals to make diagram D.
+We first duplex the diagrams for the Fe- or Cu-bearing minerals to make diagram D.
 Note that after secondary balancing with `duplex()`, the argument `balance = 1` should be used in `diagram()` to prevent further balancing.
 This is because `duplex()` preserves the primary balancing for Fe- and Cu-bearing minerals (internally the "plotvals" components of `dFe` and `dCu`).
 
-Then we combine diagrams D and C to make the final diagram in E.
+Then we duplex diagrams D and C to make the final diagram in E.
 The fields in this diagram are labeled with mineral abbreviations from the OBIGT database.
 ```{r duplex, eval = FALSE, echo = 33:43}
 ```



More information about the CHNOSZ-commits mailing list