[Blotter-commits] r1750 - pkg/quantstrat/sandbox/backtest_musings
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Mon Jun 26 16:29:28 CEST 2017
Author: braverock
Date: 2017-06-26 16:29:28 +0200 (Mon, 26 Jun 2017)
New Revision: 1750
Modified:
pkg/quantstrat/sandbox/backtest_musings/strat_dev_process.Rmd
pkg/quantstrat/sandbox/backtest_musings/strat_dev_process.pdf
Log:
update to current doc
Modified: pkg/quantstrat/sandbox/backtest_musings/strat_dev_process.Rmd
===================================================================
--- pkg/quantstrat/sandbox/backtest_musings/strat_dev_process.Rmd 2017-05-01 13:34:02 UTC (rev 1749)
+++ pkg/quantstrat/sandbox/backtest_musings/strat_dev_process.Rmd 2017-06-26 14:29:28 UTC (rev 1750)
@@ -1,6 +1,7 @@
---
title: Developing & Backtesting Systematic Trading Strategies
author: Brian G. Peterson
+date: "updated `r format(Sys.time(), '%d %B %Y')`"
bibliography: stat_process.bib
output:
tufte::tufte_handout
@@ -12,8 +13,8 @@
keywords: quantitative trading, backtest, quantitative strategy, scientific method
subject: quantitative trading, backtest, quantitative strategy, scientific method
-footer: Copyright 2014-2016 Brian G. Peterson CC-BY-NC-SA.
-copyright: Copyright 2014-2016 Brian G. Peterson CC-BY-NC-SA.
+footer: Copyright 2014-2017 Brian G. Peterson CC-BY-NC-SA.
+copyright: Copyright 2014-2017 Brian G. Peterson CC-BY-NC-SA.
abstract: Analysts and portfolio managers face many challenges in developing new systematic trading systems. This paper provides a detailed, repeatable process to aid in evaluating new ideas, developing those ideas into testable hypotheses, measuring results in comparable ways, and avoiding and measuring the ever-present risks of over-fitting. ^[ *Back-testing. I hate it –- it's just optimizing over history. You never see a bad back-test. Ever. In any strategy.* - Josh Diedesch[- at Diedesch2014] ]
@@ -1706,7 +1707,7 @@
- modifying existing expectations
- track the number of trials
- how do you define a 'trial'?
-- CCSV sampling
+- CSCV sampling
- combinatorially symmetric cross validation
"generate $S/2$ testing sets of size $T/2$ by recombining the $S$ slices of the
overall sample of size $T$.
Modified: pkg/quantstrat/sandbox/backtest_musings/strat_dev_process.pdf
===================================================================
(Binary files differ)
More information about the Blotter-commits
mailing list