[Adephylo-commits] r114 - in pkg: inst/doc inst/doc/figs man

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Dec 16 18:27:32 CET 2008


Author: jombart
Date: 2008-12-16 18:27:32 +0100 (Tue, 16 Dec 2008)
New Revision: 114

Modified:
   pkg/inst/doc/adephylo.Rnw
   pkg/inst/doc/adephylo.pdf
   pkg/inst/doc/figs/adephylo-012.pdf
   pkg/inst/doc/figs/adephylo-017.pdf
   pkg/inst/doc/figs/adephylo-phylo4d.pdf
   pkg/inst/doc/figs/adephylo-treePart.pdf
   pkg/man/abouheif.Rd
Log:
Vignette finished; just one problem left: Lovecraftian printing of partX (printing changes from one chunck to another... without any changes between !!!



Modified: pkg/inst/doc/adephylo.Rnw
===================================================================
--- pkg/inst/doc/adephylo.Rnw	2008-12-16 10:55:40 UTC (rev 113)
+++ pkg/inst/doc/adephylo.Rnw	2008-12-16 17:27:32 UTC (rev 114)
@@ -44,8 +44,9 @@
 %%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%
 
-\SweaveOpts{prefix.string = figs/adephylo, fig = FALSE, eps = FALSE, pdf = TRUE, width = 6, height = 6}
+\SweaveOpts{prefix.string = figs/adephylo, fig = FALSE, eps = TRUE, pdf = TRUE, width = 6, height = 6}
 
+
 This document describes the \code{adephylo} package for the R software.
 \code{adephylo} aims at implementing exploratory methods for the
 analysis of phylogenetic comparative data, i.e. biological traits measured for
@@ -428,16 +429,18 @@
 A partition of tips can then be obtained for each node.
 This job is achieved by the function \code{treePart}.
 Here is an example using a small simulated tree:
-<<treePart,fig=TRUE>>=
-x <- rcoal(5)
-plot(x, show.node=TRUE)
-nodelabels(paste("N",1:4,sep=""))
-treePart(x)
+<<fig=TRUE>>=
+youpla <- as(rcoal(5), "phylo4")
+plot(youpla, show.node=TRUE)
+partX <- treePart(youpla)
+partX
+x <- youpla
 @
 
 \noindent The obtained partition can also be plotted:
 <<fig=TRUE>>=
-temp <- phylo4d(x, treePart(x))
+partX
+temp <- phylo4d(x, partX)
 table.phylo4d(temp, cent=FALSE, scale=FALSE)
 @
 
@@ -460,7 +463,7 @@
 
 \noindent And here are the first 10 vectors of the orthonormal basis
 for the ungulate dataset:
-<<fig=TRUE>>=
+<<orthobas1, fig=TRUE>>=
 temp <- phylo4d(myTree, treePart(myTree, result="orthobasis") )
 par(mar=rep(.1,4))
 table.phylo4d(temp, repVar=1:8)
@@ -523,7 +526,7 @@
 ung.listBas[[3]]<- phylo4d(myTree, as.data.frame(me.phylo(myTree, method="Abouheif")))
 ung.listBas[[4]] <- phylo4d(myTree, as.data.frame(me.phylo(myTree, method="sumDD")))
 par(mar=rep(.1,4), mfrow=c(2,2))
-lapply(ung.listBas, table.phylo4d, repVar=1:5, cex.sym=.7, show.tip.label=FALSE, show.node=FALSE)
+invisible(lapply(ung.listBas, table.phylo4d, repVar=1:5, cex.sym=.7, show.tip.label=FALSE, show.node=FALSE))
 @
 
 \includegraphics[width=.8\textwidth]{figs/adephylo-figFourBas}
@@ -534,20 +537,164 @@
 quite different.
 \\
 
+One of the interests of Moran's eigenvectors in phylogeny is to remove
+phylogenetic autocorrelation in a linear model.
+This can be achieved using the appropriate eigenvector as covariate.
+Here is an example when studying the link of two traits in ungulate dataset.
+<<lm1, fig=TRUE>>=
+afbw <- log(ungulates$tab[,1])
+neonatw <- log((ungulates$tab[,2]+ungulates$tab[,3])/2)
+names(afbw) <- myTree$tip.label
+names(neonatw) <- myTree$tip.label
+plot(afbw, neonatw, main="Relationship between afbw and neonatw")
+lm1 <- lm(neonatw~afbw)
+abline(lm1, col="blue")
+anova(lm1)
+@
 
+\noindent Is this model valid, that is, are its residuals independent?
+<<resid, fig=TRUE>>=
+resid <- residuals(lm1)
+names(resid) <- myTree$tip.label
+temp <- phylo4d(myTree,data.frame(resid))
+abouheif.moran(temp)
+table.phylo4d(temp)
+@
 
+\noindent No, residuals are clearly not independent, and exhibit
+phylogenetic autocorrelation.
+In this case, autocorrelation can be removed by using the first
+Moran's eigenvector as a covariate.
+In general, the appropriate eigenvector(s) can be chosen by usual
+variable-selection approaches, like the forward selection, or using a
+selection based on the existence of autocorrelation in the residuals.
+<<>>=
+myBasis <- me.phylo(myTree, method="Abouheif")
+lm2 <- lm(neonatw~myBasis[,1] + afbw)
+resid <- residuals(lm2)
+names(resid) <- myTree$tip.label
+temp <- phylo4d(myTree,data.frame(resid))
+abouheif.moran(temp)
+anova(lm2)
+@
 
+The link between the two variables is still very statistically
+significant, but this time the model is not invalid because of
+non-independence of residuals.
 
 
 
+
+% % % % % % % % % % %
+\subsubsection{Autoregressive models}
+% % % % % % % % % % %
+Autoregressive models can also be used to remove phylogenetic
+autocorrelation from residuals.
+This approach implies the use of a phylogenetically lagged vector, for
+some or all of the variates of a model (see references in \code{?proxTips}).
+The lag vector of a trait $x$, denoted $\tilde{x}$, is computed as:
+$$
+\tilde{x} = Wx
+$$
+\noindent where $W$ is a matrix of phylogenetic proximities, as
+returned by \code{proxTips}.
+Hence, one can use an autoregressive approach to remove phylogenetic
+autocorrelation quite simply.
+We here re-use the example from the previous section:
+<<>>=
+W <- proxTips(myTree, method="Abouheif", sym=FALSE)
+lagNeonatw <- W %*% neonatw
+lm3 <- lm(neonatw ~ lagNeonatw + afbw)
+resid <- residuals(lm3)
+abouheif.moran(resid,W)
+@
+
+\noindent Here, this most simple autoregressive model may not be
+sufficient to account for all phylogenetic signal; yet, phylogenetic
+autocorrelation is no longer detected at the usual threshold
+$\alpha=0.05$.
+
+
+
+
+
+
 %%%%%%%%%%%%%%%%%%%%%
 \subsection{Using multivariate analyses}
 %%%%%%%%%%%%%%%%%%%%%
+Multivariate analyses can of course be used to identify the main
+biodemographic strategies in a large set of traits.
+This could be (and likely is) the topic of an entire book.
+Such application is not particular to \code{adephylo}, but some
+practices are made easier by the package.
+We here provide a simple example, using the \code{maples} dataset.
+This dataset contains a tree and a set of 31 quantitative traits (see \code{?maples}).
 
+First of all, we seek a summary of the variability in traits using a
+principal component analysis.
+Missing data are replaced by mean values, so they are placed at the origin of the axes (the 'non-informative' point).
+<<pca1, fig=TRUE>>=
+f1 <- function(x){
+    m <- mean(x,na.rm=TRUE)
+    x[is.na(x)] <- m
+    return(x)
+}
 
+data(maples)
+traits <- apply(maples$tab, 2, f1)
+pca1 <- dudi.pca(traits, scannf=FALSE, nf=1)
+barplot(map.pca1$eig, main="PCA eigenvalues")
+@
 
+\noindent One axis shall be retained.
+Does this axis reflect a phylogenetic structure?
+We can, as previously, plot it onto the phylogeny.
+In some cases, positive autocorrelation can be better perceived by
+examining the lag vector (see previous section on autoregressive
+models) instead of the original vector.
+Here, we shall plot both the retained principal component, and its lag vector:
+<<pca2, fig=TRUE>>=
+tre <- read.tree(text=maples$tre)
+W <- proxTips(tre)
+myComp <- data.frame(PC1=pca1$li[,1], lagPC1=W %*% pca1$li[,1])
+myComp.4d <- phylo4d(tre, myComp)
+table.phylo4d(myComp.4d)
+@
+
+\noindent It is quite clear that the main component of diversity among
+taxa separates descendants from 'N02' from descendants of 'N07'.
+Phylogenetic autocorrelation can be checked in 'PC1' (note that
+testing it in the lag vector would be circulary, as the lag vector
+already otimizes positive autocorrelation), for instance using
+Abouheif's test:
+<<aboutest, fig=TRUE>>=
+myTest <- abouheif.moran(myComp[,1], W=W)
+plot(myTest, main="Abouheif's test using patristic proximity")
+mtext("First principal component - maples data", col="blue", line=1)
+@
+
+\noindent To dig further into the interpretation of this structure,
+one can have a look at the loadings of the traits, to see to which
+biological traits these opposed strategy correspond:
+<<loadings, fig=TRUE>>=
+ldgs <- pca1$c1[,1]
+plot(ldgs, type="h", xlab="Variable", xaxt="n", ylab="Loadings")
+s.label(cbind(1:31, ldgs), lab=colnames(traits), add.p=TRUE, clab=.8)
+temp <- abs(ldgs)
+thres <- quantile(temp, .75)
+abline(h=thres * c(-1,1), lty=2, col="blue3", lwd=3)
+title("Loadings for PC1")
+mtext("Quarter of most contributing variables indicated in blue", col="blue")
+@
+
+\noindent As a reminder, species with a large black symbol would be on
+the top of this graph, while species with a large white symbol would
+lie on the bottom.
+
+
+
 %%%%%%%%%%%%%%%%%%%%%
-\subsection{Performing a phylogenetic Principal Component Analysis}
+%\subsection{Performing a phylogenetic Principal Component Analysis}
 %%%%%%%%%%%%%%%%%%%%%
 
 

Modified: pkg/inst/doc/adephylo.pdf
===================================================================
--- pkg/inst/doc/adephylo.pdf	2008-12-16 10:55:40 UTC (rev 113)
+++ pkg/inst/doc/adephylo.pdf	2008-12-16 17:27:32 UTC (rev 114)
@@ -91,41 +91,43 @@
 (Using orthonormal bases)
 endobj
 65 0 obj
-<< /S /GoTo /D (subsection.3.3) >>
+<< /S /GoTo /D (subsubsection.3.2.2) >>
 endobj
 68 0 obj
-(Using multivariate analyses)
+(Autoregressive models)
 endobj
 69 0 obj
-<< /S /GoTo /D (subsection.3.4) >>
+<< /S /GoTo /D (subsection.3.3) >>
 endobj
 72 0 obj
-(Performing a phylogenetic Principal Component Analysis)
+(Using multivariate analyses)
 endobj
 73 0 obj
 << /S /GoTo /D [74 0 R  /Fit ] >>
 endobj
 93 0 obj <<
-/Length 1758      
+/Length 1745      
 /Filter /FlateDecode
 >>
 stream
-xÚÝYKoÛF¾ûWð
-Ù}“ì-M“ ¤z
-z`%ZQ#‰‚ŽÝ_ßyìR+Š~D·Y+rgvç›÷X$³D$o.Ä=ß¿Œ/~z­M"‹\Ik’ñe¢”É%'m®+•Œ§É§t<’égø4£?ÆŠ)´ÊÖÀ¶Ö°mÚÀŸ5ÜÀgÑzª£s
-›W…TkØWOFªH¿Œ¬NëÙá0%)óÊZ…dY!s[TI¦Ê¼¬¤¿5‡ÏŸÈ>{øìF™V6}×.GªìÞlè
-0N2“+­€‘Îua™Ñ¯xì¤ñ™riC4ÀÉ¥–>Ï™±°ÆOÉ÷4:‘&×Æñ=%ðµÆÁ1*/ËŠù¿laÿj¤áM·Ú"ýB!’Í,áÅÇ7 S&U^9吣€«²`Vr”Up‹·ÀC¥;«…{‰têÅŸìæ|2úN>L¢R@=|fwJɧ(>å5â‹glÕR§[„±A­mñJç|¯j«£‹W&¯zöAÚ•¤õÎJH‚ø²=ù•Ñ¹pº´˜DÌ…MÈÓæpà'…Ò¤òzGÖ‘i­Ó
-]emPÈf…¶°›æí
-þþ<ÊŒÑé×Ïøî†é¾âºáuMä¼Æý-¢ðï9i,ýŠ(:þô|ÆD»Îßï‚ k}uU•æ£Ì
-_†ñWo§tÒyØÂÓaýT.‚Jy¨Þ®HíˆjkÁ’È4¾tÃ’®Ñ™KtfÎÜôïRIyrÝÞאDß¾åqÌ…`llÚ#ø¦ñ ’Â#ìØzãß4ÓþѶ*ÿ€ÝµsLs˜ÆƒùaƒyÏ´çҝÇí|”DÀѽ굏ñ}§rÿC(•‚°n†ðáP—¾¯¿ôЬBzár©Lœ¼OÂøq VUnTØßBjµ&ý«¡4u’ lùTÀ?g0N™ÿV¤ÕwEÝê	âºÊK'yáÌ¿
-ù½Ælï¹WdÒ꼄ì¨vÑ\»¼‘¯×`›zV7\¼pÀ¨¹´©W!ÁÝ`TžoOnXYŃ
-¨«¾)è¸üø
-˵úP\zíÙÅŠTL‰•êÆmñd틬·gT\6Qhœø¨‡ë™°oF|oµ©¶8'N1dGqªÅdIÈ<Û²õKû€î¥«ßö
-Ë#ÁN°&¿óiú‡o9ê¬yÑ™§ëc"Õl…Š´ÝsÇu9ÊŠ"}æ; _þyãì/…zÒéôËo,PàiÞ‡‡ø%5DèT±'"¬)ô„]Ðtó·—¨Éüç¾Ï…wWTjoæ]§Ât=¡\%•%`"Žvu«‡Vâ}KbN¹§áØüð€6a‘ïŠfNOµZ#ÕÙaPÅað÷mœ(ÚÐ@|&åÓÏ%`ChÑdÛœ¤3-~|/vD·›Yè·<<£Zb°_DèýÕ»Ðr+È,\`@£¨v’.mõãj¦‡ûª9'€uV˜;l°,as:Ø›
-ýÕýžúaù÷ë`–/㨷Š&.ôöE¤†ùJó<N§v¾^Ó`Yê0i“GmÝÄ·_l%¡0ÛOx2¦mÇåÔJQöF•47é”áËÀå‘ô%Ïòh
-5ÙtÎÌ«ÄÓû¡Ëi㠵ȅS»ßÚ@cÕàt–:t¸·ŠÃE¼ÿÀϏø%i®Ñ^’5 5ÍÈjš‚åCWV.×Úœyed ¼òØž)E.,烃Ó7=[/<ïåéÎÒ,ú<zlŸûl	i«¶œÎü9—Šõ
-²ŒZ‹ƒAÓÌìHÀr¢tÖ¬ÂA\0àìºç´¾r¨7qò¿òI#\4yDÐÓðçxpNŸ9ŸðEØFÕÆŽ/ŒIúz»÷ïš)?èêkÃà%¾PÛ†ßKÊóT|ßy{_XÂoÛ¢—³]°+â@u,fJâe•, †ÁŽƒ“Ñ«ý&Ԫ̅íÁߣY6ñ¼¨áÞ+l[áÒ[û<p'óNÚ¿	ÕÍ
-oj=qsí-z›í·kN­’ƒ”c´†rgLµ9Y§àáâdáÿ0møé4ŒÅ×UˆD{â‰Ë¿ã97QÔ«)/–t4…î½G*šˆƒYYçÛî‚]ò„X&Ï1î4óLa‚	#>¯@B©ƒ5ªsá|e¥OïÈs ½EƒŒåQzg5’Ê*²’–¬a¿ëÓt'tUdqž«®ÙìÚo[Σj¢}¦*Í°ãbÊ#?v_MBFÀB	yØ·¼» V•HÓ}Äaõ¡¦&Îû€ÑjÆÚÍ@‰9 jWpÊ~2–®Êµ³Ifá[¹fã=¯Æÿ ßQn
+xÚÝYIÛ6¾Ï¯Ð-2©Ü%õÖ%	 @LOAª­qÜØ–aÙ“™þú¾…”iY³Ä	šiÑ"ß#ßÇ·Hæ‰H^]ˆÞ?_^üðR›D¹’Ö$—W‰R&/”Lœ´¹®Tr9K>¤—™~„§™üqù(ª˜B«Üh
+ühi
+Ëf
+üÙ Á-<ËÖSíSؼ*d ÚÀºz:QEúibuZÏ›)‘H™WÖ*$Ë
+™Û¢J2Uæe%ýñp«<"xöðì&™V6}Ó®&ªìg¶4Œ“ÌäJ+`¤s]Xfô+n;m<E¦\Ú
+pr©„¡ƒç93VÆø”|N£irmŸS_kl£ò²¬˜ÿ/-¬_O4œ¡éGÒ_ "Ùμ7cʤÊ+§rpTÀAÌJN²
+Nñx¨t‡bµp.‘μøÓÝ‚7Cæᾓ “¨PïÙïRò.Šwy‰øâ¢Zê´C¼µ?¨tÁçðWmutðÊäÕ@?èv%Ýz¯%$A|؁üÊè\¸ÀFÝ	ZLDÔ…UÈÓæ°à'…ÒtåõŽ´#ÓZ§[:ÊÚ Íua-Ú5üýq’£ÓÏqî–é>ã¸áqMä<Æõ-¢ðïÝ
+hú5Qôüéûœ‰v½½ÞÖ,‡×YTUšO2+¾ÿâ×`¥tÒyØÂ×ñû'¨\•òP½^Óµ#x[K–D¦ñ¡–tƒÆ\¢1;0æfx–JÊ“ã^c}ù’¯cöUÆʦ=‚¯ ]x„[oýL3nm«ò¿ Ø}+ÇÀ4ç€i<˜ïö1˜‘õÌ&Ý[ÜÎ{IÍ«Þx?4*÷?„R)pëfÏà¥qéÛúÓ ÍzÄ¥.—ÊÄÁûč;bUåF…õ-„VkÒ¿
+S'Ê–Oü³på´ùïDZ}S¤Ñ0 ž ®«¼tòqÎü«?¨Ìö©A&­ÎKHÀŽr͹Ëùf¶­watËÉ;ŒšS›zÜ-zåEwrÂÊ‚Ó(•€@FX
+UAÇéÇo˜®Õ‡$àÊßî‘^¬éŠ)°RÞØõïA6>Á|{NÉe¹Æ©÷z8ž{‡J`Ä·¾ö±«-ÎñSÙ‘Ÿj1X2Ï:Ö~)c»P½ôÙâëAbytE°´É¯|ZŽþñK΂:+E^ôêé†XOõ–BEÚî9ÁcºšdE‘>ó€Oÿ¼r“—B=épz„å&(ð´ïÝcì’
+¢)TªXÖäzÂ*(:ÈøÛ«Ô¤þ_çÂÜ5¥ÚÛE_©0Ý@(W‰¯Š€0‘âA½ºÓ†C)ñ¶%1g\Ó°o~¼C›²È÷y3'Š§š­†êl7¨b7ø{Š6éòéç
+°!´¨Ò5'áL‹ï_‹‘¸Þqí)ÒS5>ïKz‚ì:*×WeìN•©|*.ë©"•Åù*S¯Hó[aÁ´_F¾Ê{üUïBsBAæd	kÆÐ+lõý²ËÇ{µbØ|ôó|&§IuèÁI‰M¸¾—ç3™²í§Ü3
+}¸ãă[m¥(MLꨉtÆZ9Åqu¢x2(ótÛ·>3ß$òô¾sZRH-ráÔ£rǧ6PÜX5Ú·åVm~Åvw8ˆ×øù_’:í©PS÷¬¦þX>vdår­Í™GF—W«?Ï€eaPhzÓ·ÍÒó^vç,¹
+¨(pëeð.\Q`9Lè¶z7̾Åïs… Xߊð  ˨èªãŒùHÀr tÞ¬ÃFœJ`W{à}NQoã´ ø>#\Ô+y7KÐ14`-ÎqKr	Þs1僱ò?’ôu·÷sÍŒ?tõ
+7hðŸ	¨®áÙqI¹ÓŠó‹àd†Â~]‹VÎzÁ¦ˆ­ÖEИ‰—Uà6ßኃ‘ÑÔ~²XæÂúàÏѬš¸“ÔpU–­qèµ}8ˆ“N(­ß†PsË‹ZOÜÜx^ÆjEëFäíËV«ä¨åèÜ!º¤¬´SpÛqºôÿ&˜5üufÈë:x¢=ñÄáßqœ(êõŒ+Úmö©¨Wje¬Û½d	±L.îpÜ«æ™Â¨šþ	¥Ö(†ý••>œ!Ï‘pF
+2–Gጯ‘dPV‘–´¤
+ûÝ Í¦3¡©"‹óLuÃêd7~ÙjE_ðö™ª4ÃŽƒ7'|C~=
+ÿ=%äaÝêþT[Uf$Õ"‹¨"	Ù6qÞŒÖsþÐnG’ÏQûTTƒ±tU®M2oåB˜×¼¸¼ø% P§
 endstream
 endobj
 74 0 obj <<
@@ -244,16 +246,16 @@
 90 0 obj <<
 /Type /Annot
 /Border[0 0 0]/H/I/C[1 0 0]
-/Rect [147.716 296.138 292.253 306.977]
+/Rect [170.63 296.138 301.488 306.977]
 /Subtype /Link
-/A << /S /GoTo /D (subsection.3.3) >>
+/A << /S /GoTo /D (subsubsection.3.2.2) >>
 >> endobj
 91 0 obj <<
 /Type /Annot
 /Border[0 0 0]/H/I/C[1 0 0]
-/Rect [147.716 284.183 423.031 295.022]
+/Rect [147.716 284.183 292.253 295.022]
 /Subtype /Link
-/A << /S /GoTo /D (subsection.3.4) >>
+/A << /S /GoTo /D (subsection.3.3) >>
 >> endobj
 94 0 obj <<
 /D [74 0 R /XYZ 133.768 692.105 null]
@@ -505,27 +507,24 @@
 /ProcSet [ /PDF /Text ]
 >> endobj
 132 0 obj <<
-/Length 1326      
+/Length 1323      
 /Filter /FlateDecode
 >>
 stream
-xڝWÛnã6}ÏWèQb†‘"·t‹ÝMwQ´hë·¶[vÔÚVV²“¸_ß™áP–RŠ€2‡Îœ¹’‘Ù&“Ùí•ä__™©L#Jç3´ÐÊgËÝÕç+)l©½'–ñœ6OËYú…Å›;•½k¯~‚¿$xž$ÏG¢¿]\Ý|ðYÁi—-Ögõ^
-íL¶Xe¿æ?´‡™ÊëÙܨ2ÇéŒê0¥y{Ùîèqµƒq\‰¶ãý™öùC
-+0+ó?‘y$ˆ¤¸$¥I¢¢N‘·]_TŽ‡ª]ÝG!ÇwVqk=Âð꒨鱟ý¾øΚ+%‚µÑxRŠ3<žw5K6¯Pñ*î­IK:pæAo´hòs÷/	^UHU>¸«v(@ÌæN‡üãž¼böhYÓ³kkZGjM~ëIy 	DÍaéZüŠKö.fÞ Ðya\Äû„«;>‰¢W5nÛˆ¼‰DöûÙ\;ÒñPÅ“‘¿=âÉk`r>ÂÂhBÃ9ZóJ@æ¬)à€ñæƒ5ã$
-¥ð€à#ˆ9"Ø%N¦))`ì˜y¿‚ñÆ[ßÃøÆû¨i\
-!åˤHD«¿‹QÄO}ƒ®¹&_Î5@“ªœºtâ§BžÍ†yò‡äá¡6N0Þ@ø­Ç|Å›¼Y滆-ÚQæй΄‘ø⌐£ ÚärK¨ö۪ᔫ¸ÊTþ…	)c'™ä¢ÙUÇ	Xø|ßb»(ʼ§Ì;¤Ê„­j…Äglƒ¢-›þ°X›ïèPý*¯qSç-Øh‹üäX²–%ñW©u°¦ç†U?Dº
-R\ˆÞÜ%o¶4.w
-O­
-؍9Ç֝7{Tô4³.¯PD³Šë	>e=jí¯ãÆÐT@AB4§H§¨5kC‰’³ú3#£Y³‡»¡1u#EÕö”ꨏ}A"¤´AEß%ÏT` IÖ`fHª1°¸’’ˆÚøêÌ™BW at n\(r
-ÅçŠT|ß\¨ìWöÓê-‚ÐÃy춃ò3ò¾åäaQXçÒçb;E¾T²8¿ç.ED…;Kª¡>¦õŒ€Œ™&H}οè}
-©úÔ°?!¿ÆBs‚n±rñ7i%;`·[
-gœ£îº.Ñ¥õõ%—Z ãü¸qb|60þ‡{®°I S±&µ³tÓ"fº‚	ñfd!»Èõ1]ìI9\€Kx˜¡þœvBI¼A|E9zu›l˜ÿ|/ ç²R„R*<
-•.!fbçD€—‰øòÄ€‹ñGæ_Î#IHªÁðɝä
-î^À0‘@ÖSÏÃ/‰yxòÏÊ4”™RRHc  -ürEVXÕ÷ϳ¹²!¶‰}"Ö‰NçÛžó2	k*„(ã-¢>4T‰Ëê‘ÞwÃÕÐ51÷1E•6¹•ÖÂcÁ	£D>:I	ŸÜ€ÚØ‘·-
-ÝàwGž;v”!G¼„ÊÒçÊY ¥”,Æ;"£ûT„ö„¼ âGìB§´a[Ó´í°»Aðœ)uîK J” Á2%›à
-²µa)LT°Ï8Zqè*¬ cOúzôì7ôr¥·NE’“*\1h—I¦hoG{JÐüŸ¶EÅôP¨6T^wm4—J
-rrä2áò#áP™cþ›·¨ê/º‹·ÕUnK
-¦§à]Ö0ŠWFŽ\¨-‹ŸRSe£„¿¯þqAg!c¥†¨›|¿¸úoœƒ
+xڝWYoã6~ϯУÄ‘’¶ºÅ(Z´õ[[Š-;jm++ÙIÜ_ß¹(K©‹E@™Cg¾9Éèd“èäöJ˯¯NLbœSy(WZeO–»«ÏWZ|F,ã9mÆ“²póqg’wíÕOð·æQê|$öÛÅÕ͇")UlHë³êB+\Y%¿¦?´‡™IëÙÜ™<ÅéŒê0¥e{Ùîèqµƒq\‰¶“ý™-Ò‡V`–§"óHI	QJE!ÿE˜·]_TŽ‡ª]ݳc;+ÞZ0¼:…$jzìg¿/>¯æƨÒ{6žT•ÙžÌ»Z$”>­PñŠ÷Ö¤%8ó 7Z4ù¹çýK‚WR•‚îª
+P³y°eúqO^1{´¬éŵ5­£µˆ&¿õǨ<C€¢–°t-~Õ%{³ÂÐyæã}ˆ՝œDÑ«·=#o8‚È~?›Û@:*>ÉüíO^S@ð 1
+çhÍ#ÈI ™³¦€Æ›ލs´ÌUá 8> Î%.¡p
+MIc'<ÈûŒ0ÞÂøÆ/0Þ³¦q1”¥2E)¶ú;Ž"~jö
+ºæš|9· M›|êÒ‰Ÿ2}6æÑgD¢‡‡Ú8Áxá÷æË(ÞäÍ<Ý5bÑŽ2‡Î=H&ŒÄ'Cf´)å2Q5â·U#)WI ”±ü3WÆŒd’´ª“ÌŠtßb»Èò´§Ì;ÄÊ„­j…Äglƒ¢­˜þ°xŸîèPý*¯qÓ¦-Øè³ôäXŠ–%ñW±uˆ¦çFT?0ÝsƒÂ†ÄìÍ]„1ñæ `Kãr§ ñÔª€Ý¹sl³i³GEO3Ò
+E4+^ð)ëQkÍCSI	Ñœ˜ŽQjÖ†%gõgFA³wCcêFŠªí)ÖQÏ}ÁdªÌ2Hi§Jþ‹ž©À2@#lÁÌþUc`q%&µñÕ™36<:…®€Ü¸PäŠ/d±ø¾¹PÙ+©ì!§Õ›•Êç±ÛÊÏXÈû^’GDaë"]Û‰ùbÉâü^ºî,©†zN5ê¦t
+2fš õ9ÿØûRõ©B~…•Ýbå ãoÚkqÀž·[
+'ÏQ÷]èÒúú’K=€»}Ô81>ÿýÁªù(ЮI<Ý´ˆ™®`B¼Y(îr}Œ{T×Ãà#nhćÿgƒ2ÚÆoPЙð-ÔÁk+ξ…PI®Ê\<
+•®!fbTY,âkÈ.Ɲ~9g’T‚á9’;ÉÒ
+7ÂDYO=O¼Dæá
+ÈÏ;@‡(ãP&Æh¥ƒ‚ôð+YaUß?ÏæÆ—Ü&ö‘XGB›n{ÉË(®©²doõ¡¡J\Vô†®áÜÇ5Ö¥^û‚vH8) J]°“Œ*¢P›8ò¶E¡üîïÈsÇŽ2䈗Pž©	h­µˆ)‘ì>“á‡=¥/¨ø»ÐémØÖôm;ìn¼àr›99Ê Ð`J2µ˜2²A´a)LTˆÏ­8tVб'}
+=zöz¹Ò[§aQ™à¤
+WÚå¢)¶ð£=£hþOÛX1=ª
+•×]ËæÒAM!0A\f1\ÅH8TæØ£ÿfã-ªú‹îâmuG•ÛRƒé)x`W†5ŒâÓ#Z/â§ÔTÙ(áù÷Õÿ!¡Tð/d¬¶ÐI¥†ÂääûÅÕßᲞ
 endstream
 endobj
 131 0 obj <<
@@ -537,73 +536,611 @@
 >> endobj
 125 0 obj <<
 /Type /XObject
-/Subtype /Image
-/Width 480
-/Height 480
-/BitsPerComponent 8
-/ColorSpace [/Indexed /DeviceRGB 2 134 0 R]
-/Length 6455
-/Filter /FlateDecode
-/DecodeParms << /Colors 1 /Columns 480 /BitsPerComponent 8 /Predictor 10 >>
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./figs/adephylo-phylo4d.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 134 0 R
+/BBox [0 0 432 432]
+/Resources <<
+/ProcSet [ /PDF /Text ]
+/Font << /F1 135 0 R/F2 136 0 R/F4 137 0 R>>
+/ExtGState <<
+>>>>
+/Length 138 0 R
 >>
 stream
-xœí¢¬ª
-†9¾ÿC߻פ‚"˜fñŸ}¦5!f}ƒ™Ô—iÁî¸ÖÊ—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë×`p=AOøº®’6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9à…Òoj½ÃÇЯ¤—q÷k±f#ß Ü¾÷r‘¿wÇ"E&qû½‰¯pD?doƧ¯}Sæe¾¯´;äå°@>B@ÿUÅ8ŸÎN™—ù¾EZŽ0â{„oů(‹^òä|z[8e^æ{­¦Æ:rÍŲ6]8
-A¾‡®`–€zh{€¹Grþ@ÿ­‘
-86äˆc26.Û˜WrmŸ®ã1e^æ{íVµþO®R0k€ƒŠ€rÆ0™õáVúôê€'*fᯂSGÊi5*Z½†@ÞU>28}Ðs––FÑϐž4w<ƒ»U†£í/¬šu=¢=)›€á€ï]ÀxóxмÌ÷ÔvŠï¤€|Áå€ÍË|Ç·é?¤M€¯;ÁòÕôTnp²ì\åg4^‹EÀq”Õ­™Nöât!*ç5hÚå».Á
-fJLõ”¢÷ÕéB4Dì[ÿUWÂ7pʼÌw|;ÌVµ‹MÕÚ¶_š.<þÄ={ñ© T¢nQõ€y™ïøvê­jÓ	Ö¦ŠemêJ¢²¸@~¥‰©Dná˜y™ïøvêta\ÑÈø…kÓ®îJ’2uÌBY¯ûÜ9˜±oŒàóéBæLÍÑ.?,íöO™—ù^º=çà±t!šJ‡8)Gj¡o>ØE³%¶Œ¢Ÿ¡O Ö´æ:øúà‡ÎE{ºðªí<ðrÀ«Í›å€W›7Ëàt=غtpÀƒæe¾ç¶ƒ³ÿÛ 3󑍂ò6Æe
-0 @&Ún;BfÌË|Ïmâ„ÃÀÊDfþìU3"1ùË/“%ÀÇL`}À•kͳ8“E§”ó0KËŠ#öpÀУPÜfWñ•3c–æ¢iô²ü@2^£§î*SÜf¥]¬iÊÜúLýVÆÎ$‘.zè¶ñ:Y ̇uQGóÒ)³áƒúƒR†wçΞ–Àø6;愹)‚“#ê‡i/“ÎÂ¥ñJ™ ÜQàþspùµL7ê€·¢Ÿ O öÇGGÍË|ÏÔ±ðɹè;RÀtƒSæe¾gêxàÛå€W›7˯6o–^mÞ,¼ÐÜ?žZ7êrÀÍi²R•ž+³ç:8OVÆg{#óòÑà<•Õ*4¬O Þ4“E'+ÿ@2óÎ?‹Rh\_ ¼g.:ðo	bcQ}³Ð„> äRSf(–¬'ćÅb`â>!MÈà‡çƒsT~Ÿ¡ÿùB32 ¸¯ŽÛ#¸‹oy¾œï o:çv ß3é=ªÔBú`Ï›—ù^YGð|ð°y™ï•u„'ÎEß–vÀ«Í›å€W›7˯6o–ž6?[xÒ,Ž•­Q”}ä'‹ž233£Øš^¤= |BxÆÌÎ}gk|¥_n—ç·Ð¼UÈSftù4bJ·\I#Ú{ ›—ùæ:ÒLa:\êÔS-™àøL–8…nc¾¹œ|&«Òp”+Ž…Û®´Í=ÍË|s0 ù¼ö×"¥\`n¤¯#ÚÈïð›„#UT¿jXTÆ»ÒVˆ{7ªk£s¶r™`Qñ³0²€ßðßMZž0Ñ®E3äÝÓe€SØæ£&ðª÷Ÿ{+ß;‘î,p
-Ȑ!|à ù`ºÈwrÜ1_˜OÆŸPŒùª.×ÅaQDÊ`ÃœWá8Æ
-Ïš\¹íWö~Lòqí­ƒ|ÿ¤q«Õº=ç`H#`ȍ Èo"•˜sDÅȦ«š|CëJêôÀ¸Ò C]pË(úzà¾#€W]?BÏù¤û8ñ‹Üqå•›f²Fue|Þ#~"î ¬~Þ¶Ë.`ìêÙ¤A³ê»póªúö8ÏšUßµ€ù•yXvàgË4à¤÷æƒ9gh¬ïp=kV}· FãîCïÍOË `FoÍç"P$³‡’þàñ©*Å,N¡‹†õ€þ‘7åª\TA±È%Ä*¤“ͪï# +
-7+sÑÇ+ŠÔPÌÉa,¸ª‚Åôò0CÌ 04ÖÏ›EÀ8€it…²ïįÌ“Ьb=ßF’^¸:ÞÇ!}g>¸¢Z÷ÄePV!ê}€[ÅöD0×Á–ØÒª:©Ûs]ÁT!Ê`­!ãfåœGÍGgÒ¢CCU,V‘KÕ7Ü¥Qz…«¢½gfÕ÷€7¢¯×ÈF>ØB>xôh:à)ó¾lƒqÀ“æÛúçA9àió³å€§ÍÏ–ž4K]t_ï={Œ§J8`Ù,² ½ˆrÀCF\NŽ¤	³x™¨ÔßÛ¼à2†!Ð,6-sΗkŐYõ}`öÎÜ8’ ²ÀRô¯ä£¾\+Z»'›Uß >Ž}›Ñ¸¹#ِޠH<þ
-qb‘ó>íÛnÆi³êûÀrésàŸEZµ"Ô½,LøòÍ2«¾kKªªh$'̧Ӆ¸+=‚0ðY>ôþ´ï‰#øtÀ§ªØÁøûüIÀQhU–&|ùhèá€Ó&~½Tƒ^\jÇ«`82zK3†Dá¸/mEc}ŸYõ½pss»FÑE[Ç5um Æÿ3åd ænÀÛø¾0ê¬GY'°>]Ø{¸Úl–GÊŃÛZOyºp¸ê¥»^=HÈttÄžM®úÀd,MKT1ÏÊr6Ñ`oƒ°®z5à8Êâ¯÷†Æ©£.¨Ó»+vv`ÆhYˆBãÔÁ•\$ÞсøÇ<T~ÍþZ‘)Ìò½ú’F¬4®ÿå"¼ýªv:`þôÝi?6^zÏô"ãrÀS3™2àŸ!]¥åÊZ+2§W–ÔÌfu˵}fp_‘gF™¿”"³iʬú~8‚#²t"Ư¨L`¶È¬ðªs0L³¸eÚW)2)<Ù†•^)À÷_?A8l˜l¾1î-~À\ô~9àà€'ªÞØóÁÖßrG‡^¥®Ê{.V~GKÓØIý´£8Wþý€{†¬Ë ±‘ÍùMIx@‹®ƒÓd4z:0Ï"ü¾¢2KyTžwmÆ«ÃfÕ÷!€ß“Óº!; ifô„ú+½§.¨ëŠ&°5}°2§0aN7„ñ~i=ó¿	™›Îå×^¸¸Æ1³êûÀ§ÂQ3ËÊ©ß
-ò=ÂÄ%¯m¸žè¡ß
-XRِV¾÷÷ð¨¹0á‚»àèT .9®è¨š?÷jO·:Vräþ‰/vµÑuÇ̪ï# ï9£‡.ùNಇŽ+ãy—qÍû]t¿öŒ¢'Ê^ <iÖ&Qháà€—è1¿]Èô¹¶q9àÕæÍrÀ«Í›å€W›7˯6o–^i&C'e2e‘ðB3¤—}ú`ådÎ, F³\iêŠVüg4YrýµÒ +“MsæÐ¸<ÿœÍåÔ4\Äì–R¶Óæ’ƒÄ_šw¸L \,/5‡ö¬`’\ ~™,€ÞSŒÉà*œ)Ý!ó_		0ÄÈ´2þÅ„®Ÿƒ{¶Ê®ØÁ‰ǃðE˜pÏVéŠmç`@#ã_Äp®·*p‘NÛ%ÃØÑaòø(úú àm×ÁÐ
-€Ù´Œ<ûÕ•Ï™‹^™úå78eV}™ƒ=_±²U@§½CÏ|»ÖŽ½er@#¨¯ù–ð(<hV}Ë+BýZ¥àü-áIxЬúÒÛ÷󗯮 ùK¤“žž.d}O¬=]Íx}…ïäƒ5g7(à´™7¦/:F7^Àpeeí¹mÍ‘ÄÏ6.‰Æ$þj,ºÇ›S‰ªÕ€oà˜1-{²Aš\ýËftD 8>ÂæçŽßM€ÉzEÒDüê+Ìâã£Ç+ÏðŸ¸/gWKCŠàXÞEߦ&`h¬¿ÂÅ’k
-N¨ÍøQ.…H:æè°8¢"cx ’Ÿ 4«€…$.‡>ŽP,èyhUI‡eƬúÞøØ2ÚøÎNÈ 8K²@qŒMe%=²˜;Ý	
-™1‹ç`5]˜¤áo*N|«J:dp¼°àfÛsÍ(ú2 ÍQ¦kŠbÛOy|tƒ, Ž‹öOU>g.Úbºpµ
-Àx¨õÀ·Ë.`¼i<hV}ïϾÕÀÈšUß[·e™ "<i–ÆLÔ¤M–ÔE®8zxÊ\N‹Ö
-ӏ@Çg`B_ <{ã«üßmK…8
-UÍFA¼Iü™¦jHšxD ¬N6ÏdÉ€s²4_žãéÇÜî\$ý	Ø)ŒI€Á#ÉF¶ª>|¢´S0ãÔ_$qÉ	˜"¸4rEYœ¶LšQ­¬ì"þ–YrÏ‹”tÑ! "øÏxfîË`àw|y>X?‰ê€õ:¹V§ÎŒYõ½
-0
-`(́[]د`Hm8ãÅÜq|à2<‹`E‡®Þä¶s0ÄqpþِWàÖEŠÒÇ»Âá¬^X6âg¸$¾ñ0Ž˜ÕSpÕÔÛep³3U,º.›é€ÇšA ó%÷ÌdÕe+Ç·IÙ ©¾pG÷°Y& «òlÒ YõýàgówÀ«Í›å€Wš›§g`š=v¼4¼Î\Þ¼‹M—ÖôÀÊ@w•ÍVóQiÆðDU®'Ngåœp<Šè	”0=;?eV}Ÿ X™ÉZf´L×pÅ?ÔøXQ6 z;adûV+Æ̪ï +sÑËÌ$Dáx!™YóŒM
-õ΁+#ë€åbËÌ9h!ÝÙqô繇.8-#Ø2Š, æSL¥ï’¯î Œ¨ÄbÍ:94ºrú-'_Üé»%‚‹-pÝâ[0.6€¿ ðâFs쏏Ñqzƒzè¼cøV€8LNÿÈè¹ì¨Ù¼m}•æ*ÿ à]×Ái²ò/ ^<›<å­ç…p‡¦~â[#àɆy-,l¸ãž<¯¥€|ü•õ™Ê·ë€¥ª~­¹*<¯e£h`{vŒHúYÚi鈛kÅ”Yõ} `Ä¯âÛ ,%ü»V-•yÀ"‘_`©óŽÓ\yîé¯ð/˜R¼d‹ÖÒ<ŒOÜ*ÀðeŸO	—²ÙO,Ž&#é;âñPYû÷ʬún,âùu§ª1¬Ĺ°˜:8>U¦á¬ð`©©‡.¸¹–<ú*öCGÁàÅ#=ß[h îÏ“0ú¿>¹Bé‹B×vç~ª›¿)µXµ1‚‹30I–k±1P¿â“pVo|i¾þ›çàÔCç±$fxm^à.ò.·÷V×Û ã fë/ƒ] SA”l*fóÁ=žSñE€nTஃսê:@sÇðe€Õ ®‚}ëL–"¶Ï/64{7Áç#‹¿¥A
-à*Øc%lå`­“æÛèɆÉ:Bô[ú ç &KTŽÛà"½Ša_<£²›íPìmBqU¹DÛ.¼¯î¢ïÐK ÿbðÊFH_ÉÒŽÁb]U„Æ÷ñ†Û¢ž¬ã\5ô+YªðÎåš= .€F=LðÓ¹|p½s];…F½•Acý`xß-€S°øTÀZ€gËw[O–l1ý}à–?©Glà™¨œþóëK
-CÈW±Žäòø0n	_DX<À/•Ðøçm
-£jKƒÇ÷qAÞ
-©a¨‹Ñ¿B¹	|à³ùà<Þ¦“ê)þ¡\Ÿ™xp½ÕÒøs¢üðŸ]©ápY²®×.à‚$d{s	ðl>0ú¿¤^õÐeZ²®×,`ì,D X´³ícˆøâÞ¹ŽeZ€K
-'¦À×Ø`<	ð‚k;|p\ÐÙXK
-GjuלJBöqÀ‚í<`y}²¹K,Þ~|¢¥áäNv;8àIÀÍE3U··ØpàËM™Uß½€çç¢;øz²aF“€{²I­"¸§êÝ€Õ|°@°“¯žÑ4àÐÆ£†h_í'kç.LÉ<`a°¢†h_éGYÒKÛ¼Z ,U¯Ôñ
-¶ãŠ:4ž ųùM•ó›<Œß ,|g·†PÆ+Mt¤¶Mæ";`„ôÍäS£e+ͪïÓ• ¬Ž©JœŸ…Šo(ò~ úŒ´pʬúÎ&Ù ña~ª7ËÚD¶¬
-p±nî¾
-ðibÀ±Ãáö¯Çþr~Ãf0
-CÁÒL´á3 × î
-`¶³”#x¬ÎQH8J±Êû5|FôÀ0xåïæàEi˧2ZþYCüè¡è3¢Õ€gwŸïÜ›.9Ž³ÁÑUË,àY7±ŸœC ­Üýã”ûø¾0%û$ÀsÑÜ÷)Ÿ½
-p_óß.4/óÍu¤[ŽÂ	Àà€£ø·8=,£›wÀƒæe¾ãuÏÿä€ÍË|Çë(¾à§Çý¼,[øÄÚÙZ/©þ=€-øyY¶xwÉ3²
-ËÍ_Éx*Fg­p3Õ ž¾ŠÏ™rYãþöM™—ùŽ×qz&K½0UŒ¡uÌ-óÀçÈHe<²íÔAù`©<(„#^T
-I“¬@Àkhsóç¡àKWžØ5Rí˜y™ïxœ‡ƒ`ÅÚÞꁾˆJ‹%ߣŸæŠ
-öÐ3Dþ½m$t`ÑÞð×Ç8­˜|œ˜É»båécb0[˶®žÜ—e¹ †Ê©GŸ ,naÕ98Ý‘C2¼ñÌ\F§l€P¦¾göoʼÌ÷Ê:¦Q4[¼·àerÀË®ƒ«’Á/©#ìšÉ*Å}ÔþcVxµy³ðjóf9àÕæÍrÀÓægËOšå1½ß.䙬KÔS“ž2+Ó$4-=4Õ8+<c	ç™äߌVž¡Š‡ô&e}Šë©dÏóa¿rÀWAÝ?X¹Ð7w†rVÿß ^Ô³ÔénRŽ­¢r—vN6/ó½²m
-iÜ ÆçÜ’í½qøf_bu .!U ¿O¹¦	³øÈ6„f ÇRҁö±€£µ®³¬¢toíX—y™oªcXe;šÏøŽ›À(rÉ‚p…¿ÑCcç¸V¬‚ì}û Ëæe¾WjSGG)€¹ÛsD¾…¿ÒÚ ®öù2ó)ÀúBz‚2÷И0äù“3êq‘ •û' oE÷kݱúàeº
-ðÂC倧´,€/©–¯úŒy™/®æª]]£G7.<°|!âÒõlÀÍk[W¯žXœ¾põé€Y|_'|ZO Üà瀯Ð 7 ²|ðYíÜ Øàë„OêNÀ,Ÿ@|nüZ¼T÷vu‹`“¯>§Û ¿Þ/ÖFÀï5\XKÎx?_;‡{ k	_­JÅûេDðQ߸U²ç[-ªœƒ•÷vÀÕÛÛGѲV£n4߯\/‹àÇë+3YŸJb.ZöÒêì“Ÿº;´ðòlÒgƒ÷O ìùà•zàÄ’]9XvÔê}ùë€\ÄWlåô?=ps 6Ò<b^æ›ê¸âübcŒ~8àÐ8?ŸvoV UÿöÁÝóOj®Ï؇} ðÜ><c/ÆepÐÎà=Vö½RßM4üÓ ÿÔŽÑ;[q¿¾ xn&ëåºp^Iª‚`¢ÊMvÑþt/`„ŠÎ>Hsò<EW;ÀÖ	o‹à›˜³k‡ÁÞE_Zu°˜Ð™hƯ]‚ŠxîbÆÕÒ]€c7ؼ°ßÖC"X;ÿ:àQ9`ãzÈu°6<ÑŒë3YŸ–6.l\+»ž u€]/6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë—6.l\ظ°q9`ãrÀÆ倍Ë×ÿ ü7œn
+q
+Q q
+Q q 59.04 110.57 114.24 247.42 re W n
+0.000 0.000 0.000 RG
+0.75 w
+[] 0 d
+1 J
+1 j
+10.00 M
+63.27 144.15 m 63.27 293.51 l S
+119.27 119.73 m 119.27 168.58 l S
+125.49 139.94 m 125.49 198.90 l S
+162.83 133.20 m 162.83 146.68 l S
+162.83 160.16 m 162.83 173.63 l S
+150.38 187.11 m 150.38 210.69 l S
+156.60 200.58 m 156.60 220.80 l S
+162.83 214.06 m 162.83 227.54 l S
+119.27 262.91 m 119.27 324.11 l S
+144.16 241.01 m 144.16 288.18 l S
+162.83 281.44 m 162.83 294.92 l S
+150.38 308.39 m 150.38 342.08 l S
+162.83 335.34 m 162.83 348.82 l S
+119.27 119.73 m 169.05 119.73 l S
+162.83 133.20 m 169.05 133.20 l S
+162.83 146.68 m 169.05 146.68 l S
+162.83 160.16 m 169.05 160.16 l S
+162.83 173.63 m 169.05 173.63 l S
+150.38 187.11 m 169.05 187.11 l S
+156.60 200.58 m 169.05 200.58 l S
+162.83 214.06 m 169.05 214.06 l S
+162.83 227.54 m 169.05 227.54 l S
+144.16 241.01 m 169.05 241.01 l S
+144.16 254.49 m 169.05 254.49 l S
+144.16 267.96 m 169.05 267.96 l S
+162.83 281.44 m 169.05 281.44 l S
+162.83 294.92 m 169.05 294.92 l S
+150.38 308.39 m 169.05 308.39 l S
+150.38 321.87 m 169.05 321.87 l S
+162.83 335.34 m 169.05 335.34 l S
+162.83 348.82 m 169.05 348.82 l S
+63.27 144.15 m 119.27 144.15 l S
+119.27 168.58 m 125.49 168.58 l S
+125.49 139.94 m 162.83 139.94 l S
+125.49 166.89 m 162.83 166.89 l S
+125.49 198.90 m 150.38 198.90 l S
+150.38 210.69 m 156.60 210.69 l S
+156.60 220.80 m 162.83 220.80 l S
+63.27 293.51 m 119.27 293.51 l S
+119.27 262.91 m 144.16 262.91 l S
+144.16 288.18 m 162.83 288.18 l S
+119.27 324.11 m 150.38 324.11 l S
+150.38 342.08 m 162.83 342.08 l S
+BT
+0.000 0.000 0.000 rg
+/F4 1 Tf 12.00 0.00 -0.00 12.00 63.27 214.61 Tm (Root) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 119.27 139.85 Tm (W11) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 125.49 164.39 Tm (W10) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 162.83 135.63 Tm (W1) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 162.83 162.59 Tm (W2) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 150.38 194.59 Tm (W7) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 156.60 206.50 Tm (W6) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 162.83 216.60 Tm (W3) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 119.27 289.20 Tm (W12) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 144.16 258.72 Tm (W8) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 162.83 283.87 Tm (W4) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 150.38 319.92 Tm (W9) Tj
+ET
+BT
+/F4 1 Tf 12.00 0.00 -0.00 12.00 162.83 337.89 Tm (W5) Tj
+ET
+Q q
+0.000 0.000 0.000 RG
+0.75 w
+[] 0 d
+1 J
+1 j
+10.00 M
+59.04 73.44 m
+401.76 73.44 l
+401.76 372.96 l
+59.04 372.96 l
+59.04 73.44 l
+S
+Q q 59.04 73.44 342.72 299.52 re W n
+0.745 0.745 0.745 RG
+0.75 w
+[] 0 d
+1 J
+1 j
+10.00 M
+183.45 119.73 m 183.45 348.82 l S
+205.79 119.73 m 205.79 348.82 l S
+228.13 119.73 m 228.13 348.82 l S
+250.48 119.73 m 250.48 348.82 l S
+183.45 119.73 m 183.45 348.82 l S
+205.79 119.73 m 205.79 348.82 l S
+228.13 119.73 m 228.13 348.82 l S
+250.48 119.73 m 250.48 348.82 l S
+183.45 119.73 m 183.45 348.82 l S
+205.79 119.73 m 205.79 348.82 l S
+228.13 119.73 m 228.13 348.82 l S
+250.48 119.73 m 250.48 348.82 l S
+183.45 119.73 m 183.45 348.82 l S
+205.79 119.73 m 205.79 348.82 l S
+228.13 119.73 m 228.13 348.82 l S
+250.48 119.73 m 250.48 348.82 l S
+183.45 119.73 m 183.45 348.82 l S
+205.79 119.73 m 205.79 348.82 l S
+183.45 119.73 m 250.48 119.73 l S
+183.45 133.20 m 250.48 133.20 l S
+183.45 146.68 m 250.48 146.68 l S
+183.45 160.16 m 250.48 160.16 l S
+183.45 173.63 m 250.48 173.63 l S
+183.45 187.11 m 250.48 187.11 l S
+183.45 200.58 m 250.48 200.58 l S
+183.45 214.06 m 250.48 214.06 l S
+183.45 227.54 m 250.48 227.54 l S
+183.45 241.01 m 250.48 241.01 l S
+183.45 254.49 m 250.48 254.49 l S
+183.45 267.96 m 250.48 267.96 l S
+183.45 281.44 m 250.48 281.44 l S
+183.45 294.92 m 250.48 294.92 l S
+183.45 308.39 m 250.48 308.39 l S
+183.45 321.87 m 250.48 321.87 l S
+183.45 335.34 m 250.48 335.34 l S
+183.45 348.82 m 250.48 348.82 l S
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 7.77 0 0 7.77 180.37 117.03 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 4.51 0 0 4.51 181.66 131.64 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 3.78 0 0 3.78 181.95 145.37 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+  172.53 160.16 m
+  172.53 166.16 177.44 171.08 183.45 171.08 c
+  189.46 171.08 194.37 166.16 194.37 160.16 c
+  194.37 154.15 189.46 149.23 183.45 149.23 c
+  177.44 149.23 172.53 154.15 172.53 160.16 c
+B
+BT
+/F1 1 Tf 2 Tr 20.71 0 0 20.71 175.25 166.45 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 10.91 0 0 10.91 179.13 183.32 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.22 0 0 10.22 179.40 197.04 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 6.97 0 0 6.97 180.69 211.64 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.65 0 0 10.65 179.23 223.84 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 5.31 0 0 5.31 181.35 239.17 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+  171.48 254.49 m
+  171.48 261.07 176.87 266.46 183.45 266.46 c
+  190.03 266.46 195.42 261.07 195.42 254.49 c
+  195.42 247.91 190.03 242.52 183.45 242.52 c
+  176.87 242.52 171.48 247.91 171.48 254.49 c
+B
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 10.56 0 0 10.56 179.27 264.30 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.33 0 0 7.33 180.55 278.90 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 6.49 0 0 6.49 180.88 292.67 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.90 0 0 8.90 179.92 305.30 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.67 0 0 7.67 180.41 319.21 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 10.41 0 0 10.41 179.33 331.73 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 2.47 0 0 2.47 182.47 347.96 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.81 0 0 7.81 202.70 117.02 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 13.89 0 0 13.89 200.29 128.39 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 3.39 0 0 3.39 204.45 145.50 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+  191.39 160.16 m
+  191.39 168.08 197.87 174.56 205.79 174.56 c
+  213.71 174.56 220.19 168.08 220.19 160.16 c
+  220.19 152.24 213.71 145.76 205.79 145.76 c
+  197.87 145.76 191.39 152.24 191.39 160.16 c
+B
+BT
+/F1 1 Tf 2 Tr 25.93 0 0 25.93 195.52 164.63 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 9.77 0 0 9.77 201.92 183.72 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.59 0 0 8.59 202.39 197.60 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 6.93 0 0 6.93 203.05 211.66 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.50 0 0 10.50 201.63 223.89 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 5.21 0 0 5.21 203.73 239.20 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 7.13 0 0 7.13 202.97 252.01 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 11.03 0 0 11.03 201.42 264.14 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.85 0 0 8.85 202.28 278.37 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.58 0 0 7.58 202.79 292.29 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.69 0 0 7.69 202.74 305.72 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.15 0 0 8.15 202.56 319.04 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 9.66 0 0 9.66 201.97 331.99 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 1.00 0 0 1.00 205.40 348.47 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.39 0 0 7.39 225.21 117.17 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 11.56 0 0 11.56 223.56 129.20 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 2.77 0 0 2.77 227.04 145.72 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+  214.92 160.16 m
+  214.92 167.42 220.87 173.37 228.13 173.37 c
+  235.40 173.37 241.34 167.42 241.34 160.16 c
+  241.34 152.89 235.40 146.95 228.13 146.95 c
+  220.87 146.95 214.92 152.89 214.92 160.16 c
+B
+  217.38 173.63 m
+  217.38 179.55 222.22 184.39 228.13 184.39 c
+  234.05 184.39 238.89 179.55 238.89 173.63 c
+  238.89 167.72 234.05 162.88 228.13 162.88 c
+  222.22 162.88 217.38 167.72 217.38 173.63 c
+B
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 9.90 0 0 9.90 224.21 183.67 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.83 0 0 8.83 224.64 197.52 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.20 0 0 7.20 225.28 211.56 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 11.16 0 0 11.16 223.72 223.67 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 5.25 0 0 5.25 226.05 239.19 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 9.41 0 0 9.41 224.41 251.22 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 11.74 0 0 11.74 223.49 263.89 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 9.08 0 0 9.08 224.54 278.29 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 7.85 0 0 7.85 225.03 292.19 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.17 0 0 8.17 224.90 305.56 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 8.29 0 0 8.29 224.85 318.99 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 10.16 0 0 10.16 224.11 331.82 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 0.11 0 0 0.11 228.09 348.78 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 20.45 0 0 20.45 242.38 112.63 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 129.66 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 143.13 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 156.61 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 170.08 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 183.56 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 20.45 0 0 20.45 242.38 193.49 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 210.51 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 2.56 0 0 2.56 249.46 226.65 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 237.46 Tm (l) Tj 0 Tr
+ET
+0.000 0.000 0.000 rg
+1.000 1.000 1.000 RG
+BT
+/F1 1 Tf 2 Tr 12.78 0 0 12.78 245.41 250.05 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 20.45 0 0 20.45 242.38 260.87 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 20.45 0 0 20.45 242.38 274.34 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 20.45 0 0 20.45 242.38 287.82 Tm (l) Tj 0 Tr
+ET
+1.000 1.000 1.000 rg
+0.000 0.000 0.000 RG
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 304.84 Tm (l) Tj 0 Tr
+ET
+BT
+/F1 1 Tf 2 Tr 10.23 0 0 10.23 246.43 318.32 Tm (l) Tj 0 Tr
+ET
+BT
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/adephylo -r 114


More information about the Adephylo-commits mailing list