[adegenet-commits] r923 - in pkg/inst/doc: . figs
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Tue Jun 21 17:34:28 CEST 2011
Author: jombart
Date: 2011-06-21 17:34:20 +0200 (Tue, 21 Jun 2011)
New Revision: 923
Modified:
pkg/inst/doc/adegenet-dapc.Rnw
pkg/inst/doc/adegenet-dapc.pdf
pkg/inst/doc/adegenet-dapc.tex
pkg/inst/doc/figs/dapc-006.pdf
pkg/inst/doc/figs/dapc-010.pdf
pkg/inst/doc/figs/dapc-011.pdf
pkg/inst/doc/figs/dapc-012.pdf
pkg/inst/doc/figs/dapc-013.pdf
pkg/inst/doc/figs/dapc-014.pdf
pkg/inst/doc/figs/dapc-015.pdf
pkg/inst/doc/figs/dapc-017.pdf
pkg/inst/doc/figs/dapc-018.pdf
pkg/inst/doc/figs/dapc-019.pdf
pkg/inst/doc/figs/dapc-022.pdf
pkg/inst/doc/figs/dapc-023.pdf
pkg/inst/doc/figs/dapc-024.pdf
pkg/inst/doc/figs/dapc-025.pdf
pkg/inst/doc/figs/dapc-027.pdf
pkg/inst/doc/figs/dapc-029.pdf
pkg/inst/doc/figs/dapc-031.pdf
pkg/inst/doc/figs/dapc-036.pdf
pkg/inst/doc/figs/dapc-037.pdf
pkg/inst/doc/figs/dapc-040.pdf
pkg/inst/doc/figs/dapc-042.pdf
Log:
final version of DAPC vignette
Modified: pkg/inst/doc/adegenet-dapc.Rnw
===================================================================
--- pkg/inst/doc/adegenet-dapc.Rnw 2011-06-21 14:53:56 UTC (rev 922)
+++ pkg/inst/doc/adegenet-dapc.Rnw 2011-06-21 15:34:20 UTC (rev 923)
@@ -77,7 +77,7 @@
where $a_1$, $a_2$ etc. are real coefficients)
and which reflect as well as possible the genetic variation amongst the studied individuals.
However, most of the time we are not only interested in the diversity amongst individuals, but
-also and possibly more in the diversity between groups of individuals.
+also and possibly more so in the diversity between groups of individuals.
Typically, one will be analysing individual data to identify populations, or more largely genetic
clusters, and then describe these clusters.
@@ -117,18 +117,20 @@
%%%%%%%%%%%%%%%%
DAPC in itself requires prior groups to be defined. However, groups are often unknown or uncertain,
and there is a need for identifying genetic clusters before describing them. This can be achieved
-using $k$-means, a clustering algorithm which finds a given (say, $k$) of groups maximizing the variation between
+using $k$-means, a clustering algorithm which finds a given number (say, $k$) of groups maximizing the variation between
groups, $B(\m{X})$. To identify the optimal number of clusters, $k$-means is run sequentially with
increasing values of $k$, and different clustering solutions are compared using Bayesian Information
Criterion (BIC). Ideally, the optimal clustering solution should correspond to the lowest BIC. In
practice, the 'best' BIC is often indicated by an elbow in the curve of BIC values as a function of
$k$.
+\\
+
While $k$-means could be performed on the raw data, we prefer running the algorithm after
transforming the data using PCA. This transformation has the major advantage of reducing the
-number of variables so as to speed up the clustering algorithm. Note this does not imply a necessary
+number of variables so as to speed up the clustering algorithm. Note that this does not imply a necessary
loss of information since all the principal components (PCs) can be retained, and therefore all the variation in the original data.
-However in practice, a reduced number of PCs is often sufficient to identify the existing clusters,
+In practice however, a reduced number of PCs is often sufficient to identify the existing clusters,
while making the analysis essentially instantaneous.
@@ -178,6 +180,7 @@
Apart from computational time, there is no reason for keeping a small number of components; here, we
keep all the information, specifying to retain 200 PCs (there are actually less PCs ---around 110---, so all of them
are kept).
+\\
Then, the function displays a graph of BIC values for increasing values of $k$:
\begin{center}
@@ -223,8 +226,9 @@
rarely looking for actual panmictic populations from which the individuals have been drawn. Genetic
clusters can be biologically meaningful structures and reflect interesting biological processes, but
they are still models.
+\\
-A slightly different but probably more relevant question would be: "How many clusters are useful to
+A slightly different but probably more meaningful question would be: "How many clusters are useful to
describe the data?''. A fundamental point in this question is that clusters are merely tools used to
summarise and understand the data. There is no longer a "true $k$", but some values of $k$ are
better, more efficient summaries of the data than others.
@@ -261,6 +265,7 @@
largest between-group variance and the smallest within-group variance. Coefficients of the alleles
used in the linear combination are called \textit{loadings}, while the synthetic variables are
themselves referred to as \textit{discriminant functions}.
+\\
Moreover, being based on the Discriminant Analysis, DAPC also provides membership probabilities of
each individual for the different groups based on the retained discriminant functions. While these
@@ -269,6 +274,7 @@
probabilities also provide indications of how clear-cut genetic clusters are. Loose clusters will
result in fairly flat distributions of membership probabilities of individuals across clusters,
pointing to possible admixture.
+\\
Lastly, using the allele loadings, it is possible to represent new individuals (which have not participated to the analysis)
onto the factorial planes, and derive membership probabilities as welll. Such individuals are
@@ -329,7 +335,7 @@
individuals and of the groups used in scatterplots.
Contributions of the alleles to each discriminant function are stored in the slot \texttt{var.contr}.
Eigenvalues, corresponding to the ratio of the variance between groups over the variance within
-group for each discriminant function, are stored in \texttt{eig}.
+groups for each discriminant function, are stored in \texttt{eig}.
Basic scatterplots can be obtained using the function \texttt{scatterplot}:
<<fig=TRUE>>=
scatter(dapc1)
@@ -351,6 +357,7 @@
Possibility are almost unlimited, and here we just illustrate a few possibilities offered by
\texttt{scatter}. Note that \texttt{scatter} is a generic function, with a dedicated method for
objects produced by \texttt{dapc}. Documentation of this function can be accessed by typing \texttt{?scatter.dapc}.
+\\
We illustrate some graphical possibilities trying to improve the display of the analysis presented
in the previous section.
@@ -378,7 +385,7 @@
cex=3,clab=0, leg=TRUE, txt.leg=paste("Cluster",1:6))
@
-We can also add a minimum spanning tree based on the (squared) distances between populations in the
+We can also add a minimum spanning tree based on the (squared) distances between populations within the
entire space.
This allows one to bear in mind the actual proximities between populations inside the entire space, which are not always
well represented in susbsets of discriminant functions of lesser rank.
@@ -473,7 +480,7 @@
In both cases, a new allele appeared in 2005 at a very low frequency, and reached high or even dominant frequencies a
year later.
-Irrespective of the mecanism underlying these changes (drift or selection), this illustrate that in
+Irrespective of the mecanism underlying these changes (drift or selection), this illustrates that in
seasonal influenza, specific nucleotides can undergo drastic changes within only a couple of years.
@@ -527,7 +534,7 @@
\\
Note that this information can also be plotted in a STRUCTURE-like (!) way using \texttt{compoplot}
-(see \code{?compoplot} for customizing the plot).
+(see \code{?compoplot} to customize the plot).
We can plot information of all individuals to have a global picture of the clusters composition.
<<fig=TRUE>>=
compoplot(dapc1, posi="bottomright", txt.leg=paste("Cluster", 1:6), lab="", ncol=1, xlab="individuals")
@@ -567,9 +574,8 @@
functions, it is possible to derive group membership probabilities, which can be interpreted in
order to assess how clear-cut or admixed the clusters are.
Unfortunately, retaining too many PCs with respect to the number of individuals can lead to over-fitting the discriminant functions.
-In such case, discriminant function become so "flexible" that they could discriminate almost perfectly any cluster.
-While the main scatterplots are usually unaltered by this process, membership probabilities can
-become drastically inflated for the best-fitting cluster, resulting in apparent perfect discrimination.
+In such case, discriminant functions become so "flexible" that they could discriminate almost perfectly any cluster.
+As a result, membership probabilities can become drastically inflated for the best-fitting cluster, resulting in apparent perfect discrimination.
\\
@@ -602,7 +608,7 @@
\noindent We now obtain almost 100\% of discrimination for all groups.
Is this result satisfying? Actually not.
-The number retained PCs is so large that discriminant functions could model any structure and
+The number of PCs retained is so large that discriminant functions could model any structure and
virtually any set of clusters would be well discriminated.
This can be illustrated by running the analysis using randomized groups:
<<>>=
@@ -631,7 +637,7 @@
groups (random discrimination).
It can be seen as the proportion of successful reassignment corrected for the number of retained PCs.
It is implemented by \texttt{a.score}, which relies on repeating the DAPC analysis using randomized
-groups, and computing $a$-scores for each group, and well as the average $a$-score:
+groups, and computing $a$-scores for each group, as well as the average $a$-score:
<<>>=
dapc2 <- dapc(microbov, n.da=100, n.pca=10)
temp <- a.score(dapc2)
@@ -701,10 +707,10 @@
%%%%%%%%%%%%%%%%
Statistically speaking, supplementary individuals are observations which do not participate to
-constructing a model, but which we would like to predict using a model obtaining on other ("training") data.
+constructing a model, but which we would like to predict using a model fitted on other ("training") data.
In the context of DAPC, we may know groups for most individuals, but some individuals could be of
unknown or uncertain group. In this case, we need to exclude individuals from the analysis, and then
-project them as supplementary individuals on the discriminant functions.
+project them as supplementary individuals onto the discriminant functions.
The only requirement for this operation is that supplementary individuals have been typed for the
same loci as the rest of the dataset.
Modified: pkg/inst/doc/adegenet-dapc.pdf
===================================================================
--- pkg/inst/doc/adegenet-dapc.pdf 2011-06-21 14:53:56 UTC (rev 922)
+++ pkg/inst/doc/adegenet-dapc.pdf 2011-06-21 15:34:20 UTC (rev 923)
@@ -110,16 +110,16 @@
/Filter /FlateDecode
>>
stream
-xÚ
VKo£H¾çWp)îÐM74Çl2)ÒJÑÈÒ2sðØØAc/àüï·^Í#ÙÐP®úê«¢Óh¥Ñ׫ô-¯nléBíl´ÜF:ó*óEk§²ÒDËMôß&,ÕqNàÖÀá¶Úãç4ÞºiYåÖ(ëÖ¤uÀõu)ânÃÇ=Ü.¨M&,D÷[^>ÔDoõ MàÚ'?öʤ.ZJí9Î;äpJÆ4xçcýºô>19Åðt¯÷:S°Úìp@ÆÏ)*àF[6UâÒxW«^´g8æ¥2fÐÖàTep[À²¾I#
-±;gP¡]©Jï£Ef·í/çOÉ* CÍ!1~´$Ad¼*`2âçñÐ@Û<6Æ5û¡5\Z£õ;Ü<¸]æ9£ ÑDéÏ] àõíJÕæËO|-´6Ê»Wy(â3¬ÐyüZSE$þ¾ç,PhĬ³AøÑÈFÒH¸¥¸.èóI®ýeä]Ü¿{ÞOÙôVÄÁXèLyÁ3
ú#HAwϤXMQÆ
-ÐÝø4~jC·¼¡;IÛp½½Kʳc=dxܸźãïÏR
-h±¸øöõØ9-Vô¬ã`ǽ¦ozLÉù Æ8e Ì¡O°0Ð*Ù´Uf,È
-emôCÖkLëWâ¸4»°Ð:7ªHíÜÏÓÀïyvÜÂB<¡ü¸Fü¤ÈÖÙøíòm`þƨÓDëOfï!U@ 2Ñ79Taó
-»E¸¬£lxYÙÚ¡¿íe´:R;ЫtªÒ&e:qÇtÂ&× î×ÄBÔmwC6T3ÑÙQB`êãºççzèþ,Ïí8/h§½Ìz#ª6l%8àrè¼Ûü{·#çѯhxyÅÏâ#ª$U!òOâLkÈÏ~
-»^Ä?xýÍï#.CûnqÓqj¥mØ¿2ÎÀ3ì+yT2ð»ú)·àqè¿IñAÎ è
-£h¤ÓûèK¯\>üä'
-ú}`ð§ö°Æ-íñϪçؼmù(ÌÈJ?mW|m«ýP`ôz¤^ÂÅY= ØS$vâò#@ scã¿
騮Ö×0¬ÂGºçàR¯CÕÞr-LÌÚ1ÏfØ.R±vçq_³aw£ó
-W=Èþ'èî§O;
-öz4ïÆÝô_Ór`½&5un/-b>àM?ÿ²è\ÆÔkæÊCOç¾ÃùqHl¦££:¤' /¬XFCÃ!âΦñÁ!-79¬²lpìËKNzS/Ë«ÿ äë
+xÚ
VKo£H¾çWp)îÐM74Çl2)ÒJÑÈÒ2sðØØAc/àüï·^Í#ÙÐPþªê«¢Óh¥Ñ׫ô-¯nléBíl´ÜF:ó*óEk§²ÒDËMôß&,ÕqNàÖÀá¶Úãç4ÞºiYåÖ(ëÖ¤uÀõu)ânÃÇ=Ü.¨M&,D÷[^>ÔDoõ MàÚ'?öʤ.ZJíç"9
qäM+Þ¹c¬ßSÞ'&'Owðªy¯3!]Ðf;@fü,3¥S
¼ÑV«M¸4ÞUǪíYóR3hkpª2¸-àJYߤìÎÔ_hWªÒûhYåc»åäó§ÄN ÄàcsH$-I03^ÆBb2âçñ²¶yl`©¯Ù!Hð®ÑúGn\.ó³ èP:åsè 1y}»bõùò_ò®ÄàU8Ä%+t¿ÖTÁß÷Jmu6(£?ú²´D né#®ú|ky B÷/ã÷Sv½¡\
Î×<S¨o9&)èîôÕeÜ ÝOã§6t˺¸
+ѻѻ¤8;ÖC'ØÀ[ì ;þþ,ÑPËo_¯ÓbEÏ:þvÜhú¦7´äO bSÊúM[eƬPÖæA?D½Æ°~%K³s£ÔÎûypø=[XÀÊkÌÙ:㯤|Ûc2#"ê4ÑúÓ¦Ùû* PÎ誰yC
Ý"ÜHÖ(^ÖDövèo{Ôô*]Á¤jë´ ç2'qÇtÂ&kP÷kb¡ÌH꿶»Æ!ªèì( 0õqÝós=t çv´S at G/³DDÕ$¸:ïÂ6ÿçíÈqô+Ú^^ñ³øß*IÕGù'ñF¦5äg?Ë
+»^Ä?xýÍï¡}B·¸é8MµÒ¶ìß
+à£3%éö8*øÝý[ð8ôßÇ0#ÇÜ gPôI
Q4Òé=úÒ+?¹Ï~þÔV3`ÜÒÿ¬zû·-ÿ
Yé§í¯mµ
+^©0Fñç_ÁGÏeöT
+;qùQB scã¿
騮$¯aX
t
+ÎÉK½U{˵0Y2kG8ÏfØ.R±vçq_³aw£ó
-W=ÈþtwÓ§;{=wDãnú/@Ãi9D/DÀ£IMÛK¢xÓÈYt.cêµHs
+FÅ¡§ó
+_Ïáü8 éè¨#é)ÑV¬C£¡áqgÓNÍÆøÍàOBVY68öå¥
+'½©ÅåÕîR
endstream
endobj
70 0 obj <<
@@ -313,37 +313,35 @@
/ProcSet [ /PDF /Text ]
>> endobj
118 0 obj <<
-/Length 3274
+/Length 3086
/Filter /FlateDecode
>>
stream
-xÚ½ZYÛÆ~ׯàÉcÀ PUVrâ(U±UÎÆNUÇ l¥Ö_>g ¨#Vü°K`>¾îA:»¥³o¥òûòöÙ׬ÌÌäI;;»ÝÎL%¥«f®(³Ûõìs³Xcùë
·ÌÌàáÔ-Y:_Wø¶ï¨ï·³:©uH/-Iª´bJ¯Û
æï¶o`BOSáï®Ñ§ön±Ì³l~ý-þ£¶Úù¼GÎßS?¼>qÿYÌ;Ï%C³7oNøHnx`sÏ÷´¯f
vÄ wâZØHc×ò?§&Ç×a ܹ1I]û'ÆEw¥¹*+!Ѽ
e Íæø~ÆÞ µ5=O=ТȨ̀UwD ¿U¼p»6ì¶Bæ diÑ?§EóiNKWä|&K£g'/³ºÿÕÀ¡ÄÒhxH9sI]f(ëJò:Wµ»P§<ÉËY4dÌüUk'[ gÑßMl¡L*0ô36`'7àê_»û%vðâÅK2&:¥yÜ!K§À×-ÒÔ%ó y>±P²å¯½KJÇ+mÐ,V¬ÙyZ±6[ëØâálèÇ·C§Æîp9oÎ=ØÁ±`Ãàèáq·'òèJ"@ À_ð<¾'o±4E¸:É£:ÊrR²y[YpTK Øõ½Øö ¯wò
-êVÜ:2_vá,r$?q×?ð»8,z&^<ñfÍûØÿ½Çør&ÝîEÀ°?u¸GrßÁ?rÇ®gOgË\þÆ;×ý1¼´è¹9Éî¤S:ØÚ¿³ãIââN>(mh<
-ÅRæóhiÚ+o§é1< ±'>¢_Ìhã bp,òû@ ËÃ:|± fÌ vÜjÀz¯OÜwìD©ñwRHøÞi³ýØfpÆ[Ò·
-
Z¯!wKtç{Hèþ®E}ëÅÄÑßòº÷«
ìüð´¨rP¥s>IRI8v~^ù¥iâ<ìrWãÉk5g<¨ø4×X°e+ºÄBïÏÂ71:jÞÄ æþ&dA3O
äP³lʤ3À#«ÈÖ+0åsC~ <ühyÚ!
-Qoð]Ýhx¿e3(-½|$ë<îátàĽìÞ*Î8r{V$»BîOÑ1a7¿Â#órjÖ^?ÔàyaÿQ¥²ckÑHèÚëc´ÿ»Hdg¯fb;б
-
Lq²ÛçØs
-{v+K[Lºâ"»æÙkrþÁ°8÷`¼qܪiùÁ,¾öRÔP¢8:Úþ!ÝbçC+¯'7ÚÄÙ£Uò.{uºùî{dõÇ
1UÛáø ±úö/XÁêÄ >jËË=°g»ÅÁ#Á ·+rÜ%`Sø©ÛƹBÔ
äµiÅú"w§qß Þû1ÂÈ*à>¡ÐD§fEdY¹âýÞ/ú
-dÄûv¤@ç
pÏ̾±ê|EgÊÊÆÐN°Rõ÷ h\z¸
u"ÍC#ǧGLûÿþ^L`º%`MëFGù#KñæËõm̯Or¾ÜDTeþMT<7Ð0¬S°e
-/S´RÓç§øL~`ÿSàÝ8XÏèØ&±;ÊñK3Djháô³²Ößz,Ëè©ìÙâ\WhH;*oNN¤¾Wj¯¼cj#¤M³nZõÕ>ª=1¾7¯àß®á84Ãr+yÀå®úðWì
ÈÈÖÊ%».Ì»G(hää
-¼¾ên¸ákþùË7ÐøWµpjÚúäÂèÚ©ËX8o¿¹±@@*ÁÕÝ¢í7X
°9o<MWÈ}]˧Ä*WI61ú
-Ýrãb¯w¢q¹)>Tbïg.dJLßx$IéH ¾Ý»¸#s@öIB,jDº #FYâ²ÇIÀû½ ûTW'º¢¨çß`×
-©
¹ ÑÿýMpÊ1×î·wmÈ'FÀ"vÙ)±Ûƪø05`¾NÔTsÙVýe:ÝÀ1DÛ
-÷
-´».,s\óËl¿F5s£ÝF@ù«Ñ:Í<÷g´ÞK¦íMéè-ðåàhΪ³ûË}×eRñaGä¼ß©43azÈ¡áÅcHÅÒKA#]1Þ0D`Ñôh-L®òkuÅ^±æ)T!UÊá^1.Kõhn"i
-\p_ÙÄRëV¡Ô.ùe&FÉ¥:¥¬,$áã4ì$R*sh UhÐ<^ͦeb?ànîÆ ¤gN,ÊÂL
-*µHo
-òùMP³kÙSWBB%óÅ£;MðÒÇN at Y¬[n'5û·ÆOâ±GSMZÿÄm#mr
fós!î`ûZÊt¹æ\ e§¡|Ujù
-×A#)1+`øèS
-ºªA;åþÉ,ßÖñ-׸@àæÞpé)Ó!ùP¡ðµ -QDU[_èèù
-%ßpñü/Spqf¹nYM*(ºiå¡îãJ¡ãDñ7-ÿ<â-²S´½àâCÀðÒäJÖÜßMà,p®Ep®ï.u·H|è[RÕ¡ÑÂNn)WÎSw¥R"Fv¼ëNQEcwTX'i>
-(;/tAÓuA÷OÔQä53ôÜ
ª^Ë{ªiQ ÅF ¯ì'@ v-ÚzlmØrl~Ñrmp³wÜçÌð|Íßbß h!Òï®ð6ØkUù"å4YÙP¯àòÿóºô"G¿SX_¾0:èM½Xð¹»÷تÐÔjE.ûHõO2}da®E¢çW¾²öóWÚG\âÜ2#={è=685°°
ÿGoXråÚ_ÍôÀnÖÚëFk}å0¡ÛĦ¨Ú·!³¡êiJÎA(Gc¦¦Å
Å«¸c6{:2lPÅìy
-ø@µ9#·RkÉSM
-7¼#ÜyY1)¦¦ßK :^£ü¶änãÂÎWÞyO¥]â5^¾~¥+'$=MÉO*7¼bp£ìêµY1U±T¨.îлK©Q¹\ )ÑÃ;À`´ÍBj¹#HS$üë£fðzà\D!Q@ÂO¯[þ½§Ôl!PÁ(P;o¾8쫨¬.ÛýÊäU÷>íá¯Ø[AlþräA.âó
-Wüù.Ù=À®AöÌÆxuTÌã2¼ÜH¦¿ÇCt)F9Ç;OZffl)ó§&çÒË,µI]¡Ì~bý oW'¶2ÿ³«A¹´º½æ áå^]1cöîtÔ**Þ?e¯'Èü¾æ{' z³ÉÔårËvꧨÛÈß!aåuRÚ£Uü-]Í@6;o¶ÁP/F0ÂîüYÐû,|×gØ1¾VȲrNGß¼éù
/{¢u.¼ÒĬsn´×ñD
ù¿$%È]=§$Vc×Üm¸>q,Ù
-ÝZ®bLêêȾkNòÏô±Q0óÓRl¢túúNXêml*Óyð^Q#À¹FÌÇÄíñý+(Vy²wϳùwÞÔ8¯yÇ5±.ø4nÄ{µQüÒ{KG°ÆÐ÷4©ÂM!¿Û¡n%Ó
-0!<J@¦sLôÛ[nCJÏzÇ×bíð;¬ufÔ]¹¢YjqHpðrÒ|©ñj¥Ìç>}ó\ú/¶þÈíäh32¸Z±ÜM~URI>ÅÛ·* ãbÀuz3`^ÓGÔU¾QhÜðó4%E¨ªÈ¶´Í³¯BÛJ£Ï1053(ÚmUó[n »üGÙã7ìU³+Ìdº.Ça¹áÚ÷Q#è{h'M«ô¢
ÃÍ»°Rzñ%ÃäÖ ¬ôß%Ä7Û|U
-õ6W6ÙP¹£;ûO3ü¢3ãj®ÐAà¬*ù3ùÃí³ÿµA
+xÚ½ZKs䶾ï¯g*;4/Uå G®½å(Nªâ¨yh&;C*¤feåק Hq¤Ýxã4$
+ ÑýáëãÙÝ,}û&ßw7o¾þcafÆEËììf;3IåY1ËÒ<²I:»YÏþ17¥16_/̼^$fþ m³X&ñ|}ZáÛ¾¡ºÞ|geTf6CyñliMTÄKº®¶\Ø|¾u
¿»Jê»ÅÒ%ÉüëküG5+,µó56ù26-ößS=¼>qýIUÌ+OC½Ól^µøHn¸auÏ÷´®j
v4A®Ä±6°Â¦æ1Ã×ý
+@
+¸rc¢2vO¤ î-Î*
Yêþtq2Ç÷ÖðJ¨¬ê¸ëÅA*Y5GÔðNÈ+·©{ÍVÄD,-0óç8±_$ÅÑb¥÷äq)jôæÎˤLç¿g30fh¡6*nϲ¨Ì[¤Í2h¹Ò©Ù=3'¹|4OþTk#ç¯MafAßM,!
+pø3`'¿vöK¬àâââ¹\<îpJm?¯4G¹)?K!æòvb(dó_«ú,ÊGÚ [¬Ø²]\°5
+[±ÇÃÞж´CÐgÏ°wç|Å`[ðaÀzxÜíI<BI ¤ø¨Éí;B¥I(+¡<*Pp&
!·
ZÀ¦ëÄÿÔý°ð¥½Û6(¬¸tä¾áµr$¸ëø] ±e 7k.Ýø÷ÿáËl»ÃJþÔàz ¾{;Ǧc¤³yJP
¿áÊäuìßE[ô\µò+iTN-¾öÄïÐéA ®õÒÖÀP-¹?CÓZy ØM·á
=qóý`F0î¨i¨Õ@¸xo,#E×à vÍÄç1ÜöKÄ:TOº@ Ú§BJñÕï¡^¸´B
ÞÒ*ò&º©y»¶9ÉQÚqs:iü°c
+`c^Z4e7¬R¸_iãÃÓ¢p`:K[:ÞW2P0=%ü.s媮X7Êp°*{yrÔyRqA
÷v½ K¶biÐ@¶èþ$óGÏh±©Ë÷;ÖõlÉ'É'ÀNVqToδo¹¡>x2Rs·5£ØpËÀ7jÞmdËÜé·xeéÜp
+e'Ì´P·Ê:\Á8bW8û6Ø&¬ÓMcK[½}*ÅÁýÂú£jeÇ2×lXµ×ÇÀ¸TæmRÔÛ~f'Ó3ÙmÇ'ÖÜ{¥M'9MÎ3c¨Éçߺûr9/¶[U5?øŲ^à%0£ÓØ[ ¬â²-"y= åè'Ï] 8QÌéòûpª?-1h*Xvì·8owÁVFÆÀiã(K%Äx`Àg¿ÅÆ#ÅàlWã90Uø)é¶Â (¾óùµ©ÅûÈO÷!0À¾àǾ&ø礸ïPd"è¡[X6®p½9¯q'¢¸Ah¿ÐîÙ+±ÃTãÃ-ÚS&T6$°
2®¿OEØàÜ¿àQ©*Ù>ÝbZÿ/ðw1ÁðÀ<m6ZÚO¬ÅËoÈ$~|ÒóóE$Q»QDD½½Ãæ0¿<2©WÈ»)Y1Ú¯Ï'ýÌùÀú§¨¼É`<£mÿ6ÉäóÒ~ñ ZØý$/õ×ÎyáôT,ms×:ÒNJÅû6°I"Ø÷*íÊSðnêuY+VûS]ä󽿺»ÏYÙ·î,_1
+u]HsÉ3QÒ$58÷ðzÕ\rÁ×üóço ð/êáT´õ¡" ©§â/ca{¼üæÎRPw¾_!Gµ
+Hã\18Y±®©yØ\%c3ùX)VxêæL6$ªÙüî@äA,Îô¥Ô£K²*³ü*C)ÚdÏé~'an
+Z*çX.ðXÌlZ²8Íð¼$¼?Ã1Î^ø¼j<hê²Ò´UdbØæ> DGü÷vÁ)$g.³ßÚpxî±ËJiºu?q\EpL
+&_ÆQl×`0ùÒ¦±Xqg7ÌNÛ
+*÷*¬»L£$ɱÜÀÄÆ!ñ«Ô27JÙm©ÑüÊÁi's~Ö{»½+}*°9'æ¤6ûÀ´¹{¾î2Ê>ÃC󰣼μ۫53áÂzаrÏ1¥bíÅ`Y:tÐoXT3^ÚL¹Å¹,r¯Ðòª©õÆð^l1NKRõE674£ÆÎ?N¿$6ÊãR³X}â]âËD6K¥$O%àã0¬-åJú4XG³qYë7x«Ë_Gb;q é§L;CB*e ÇL9à{7ÿ±êͬâÌöÔE#¡þh g` ^òøÀ(«uËådfÿÖ4y+X5jÒø-¬)K5O²¬?w°|-I;§1(gº¸OfåÌÂqÐIòqåPB
+A=ÿäÄêxó
+ ÈæÞqi)Ò!ýP!õ!MQ9\èèø9ßp*pE¯)N²¹§AÔ@§ÒÙ´ñP(wËq&ÑñçoöøyÄ;8ÈNÙÔR=J('HÚx¢°æºðÖhg¸¦=¸~xn»iä¾%e*Mì8K±²³39Ù¨qÇ»¦
+2»£BbÅ.ew^馷QUüs×',k.©52ë"Rm¿¿ýé*Î¿× .r|n¤)
+ܲ_Õ/çðrÛvgáë')7zE¿Ò49ÄL-6É {
(åÿ]&h6¬ ó·eî3ÇwJ®ÑC¦\bÒÑó@¢Êezvß±µÐm?lÏ)ÅjgiùùÞÁÃìå·ÑNÁ1Â
+$j
+uÈ¿½ñ;¹ÙJ©zÕ
lóCº\eð )®\DEÚb)äÈL}ÆÄXQÊbíÊóÇä_×h Ìñ|aÓÎáOò¡iã0¸\Ú¤IÊ@¤H!8z'¾. ÑI¾ê®q¨-aÓqàj(éªUuo²µ
+½à¼__÷S˯ÎT0=êµá6CË8&&rÜ!_såXaÊÖ :eÒJ_¬¹dE«kvßsìW÷
+"Ü0ᯠTÔåów×W÷¾÷Áü¹Ú±à¯ú0XÙãWSa°¿ÓÓ°_áï7V>w±æÚ[¹¸JRºZ¢2ºfríɽDºYøÌÙz²b! V²pcöAÝX&Ký_è$Ü7ZÕë_¼ìu09⬥1>B
+ÿ/PǼ&Á×\àù ¾Üû(¦õÜèH®jøSè#å¶}ÁþzJzÊÒŲ·,$µ%%×ãLð*#¡N{Çtg
+Wmû
+|¢îz /uÁ©]ÖzË/#rÏøå(P7
+ÎZ<(³[ð¥ºs¿àÅç#Îÿ%1ÑU[¯?{ª;iOǦ/
Ö9«¾Ý`û°íÙcØË{ù» hF7º.éÀ
õ¶á9 6 KûK~|Xýoý1Ëd</ù÷~V¥b);Æü¢L=e#ßUHÞÖcë}pAH¤")ÞX)Lw¤'îN8ÜuSKåÏJoêSgÖwJÊW.jA_xòûð¸átµf#¡VÜþ >áazZnp^Ê0z)ùÃ>Ô£8ô-TW¹°^ÿQÓ'¶BnÅA?ܼù/
endstream
endobj
117 0 obj <<
@@ -360,38 +358,47 @@
/D [117 0 R /XYZ 133.768 667.198 null]
>> endobj
6 0 obj <<
-/D [117 0 R /XYZ 133.768 368.717 null]
+/D [117 0 R /XYZ 133.768 356.762 null]
>> endobj
10 0 obj <<
-/D [117 0 R /XYZ 133.768 340.081 null]
+/D [117 0 R /XYZ 133.768 328.126 null]
>> endobj
116 0 obj <<
/Font << /F81 111 0 R /F8 85 0 R /F11 115 0 R /F7 120 0 R /F72 113 0 R /F92 121 0 R /F94 122 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
127 0 obj <<
-/Length 2432
+/Length 2572
/Filter /FlateDecode
>>
stream
-xÚYKÊÞûW¨ì,PÕ¡ih`r8÷Vâ8ÄOUBÅtÙójh$fb'^hîÓçñWO¸Ú¯ÂÕg¡<¾}öÛ?gz¥µÊ$ZÝîVÚÚleTE&YÝnWHu7ZGqðÆÍzcÒ$8u¼Ã«õÇÛ¿¹U®rY$®6:SN 2o·°®jÖQ0:ü+Ô1î,è
-þZ¤klÐîøó÷Ë^Î=üàlÕÁO_RÚÙó¢¢\Gip/äªÏxTµåowøò Lú\ê,WI·ÄåNv7ð£ì%üÑùt° ÌÅÜ6UMAµÞÄIÜ:¶íÐkøà/zéø$ ¾ÚD`82 O2¢Á»ÇG Qu8F)HǾç,
qÏsï~ñ_ò¢ÿä°¿&GÛÁ ðCËý 6¨Pöàm$mÑ1d|$pDCÝñ¢ÕñbTÄ.qPPá\üwðáצb0<Ï¥(ªµðdmpnÄUßóÌ(nOVL2e\bÆ&*Ϭ3q#89 VkLDøqÈúInñ¬ÏA]ÅÐÛÄä/h4§³ÚÅA}u,¦îÄO×,%jÄèæg#ÕÆhÀÎU^ Öömw¸'KnLhQ8Azrêkýe©²&xC2ìRÅ\$IßO»VN`F»òÈÛ*ÌG=SÃùÈ(äO!´É§u¨ØW ¡ÆÓLðeN?8;À÷-& @$@ñ£ÿM ÷£Å¹²é7í¥X
-Ì!zÏ,Ef`ó±9#¾»ýùèEåkKåÆ·Tóh@¼b¸JÃìðxìÇ&
-½´Oj¸ç좮Ð)H2?iP\«h_ôäÄ([Ñ=°¢4(¾t?¸Ä¢.Pì;d÷§"fXkÂKþòó[¤ò_$ðWWKQ-åNG@ÿùÿ³OjUƾ@f FÚ s» ©XÝDa¤â8åÙ+St^ÀĪ~ì«ÆåûCÉSóÌ(sB*9&¬¤ >ÜØ&Û<¦Ë¥¸ÿ9n¶y*1P'ïÇ)âÌ\4RÑd f7HvIü·Pjrq6´*9(}90GøY^©*ú~A êLÇ4³Ý73;]Vãg
-Á;Ù rÑ©bÉChöHúD9LÌa2i³]RqfK,ÖBz/â.Eê ìUæ¬%ko¾
|ÿ·wRCnK÷çÚ¨6Öqð¤Âk!Ú£ã#±ëÚÜ¡à0Ð
-8Ëõ¼É櫺+&ãch%º ©^뫧zÑMs
-çWÛ³P^(ò5¨©ÃJÿxólõAZ¾q
-øH±ëÚLþÜf®à*·¾"=;`g£ÜðÁ*Á¢ùrc`
-Rv¾JU¢ÍÓ¬J~d%wGvA@±FTYS*ÆLEüýýbrÓᶠÞ0d§wSxãÔÃÛQ)%©£>ø÷"¬d£9B¬ë!Ixùç$d?<SzD{D ¢~¬g¬¢2
-rÂ*lñ§Hõ¹ïhÏK7ØÎ%¸Jûb ÒÿiI¨L¨/s$¼õÝ)í\FX¹Íðk6زkÏäÙîÅ]øëÇó.2฿çPr²uMj ðϹÂð>ZÝRßó}N=ID Ú¾²9~Úx.0Âo
-ùªåübó7aú
-CxbbÌ/ø÷;{ýzggþNfà
-%¤¢½sY^Úÿm'oëì¢)JOMy8IñóجâáÈËØ3ⶱgvAä}ÌÛÊöýÍz£CÉ1Á{į©©¬kQï*$°U;5)èãTÕòîµd3|;R`¡|ͽ·îH.ÒÈdõ¯ètq¯®æýpéú|æ%Ô
-áöåÁ«;È<+vQñK°Ê°0k$Ô>
V¿d2ªÞXß0´`BTãUýº^£JÛò»Ï5"tÝç LKåù h¨¿¹ãÊzI^VÕUÏ離å²åIyvEys±a4^ª8ÁvÞxpFRR4í-%V]ÓÏCÉGdzAÃ'¸°f/<( WÍ0éùnë~ÐgåL²4L>WÞOl¹«n PÎÅ£%!9·[V¶[ªeÐþ÷]"GMSÔJHÎJ¡¿Y:·µ'绹÷#øY%z¼
-Ã1oÓ]R^q¦vȺÁa+íÃ#jOÖ%\ãlCAqüWKn¦ØßÑ.²]Ì¥ØCWoÝéLà5pjCýc5N8/o¾^/èu~Y½t]¿!dàãW«8û;¾óä 'ßHÿnakÿÊI9ýÈõ L
-?½2ØÑÑÌqꧫ§¤·7=oA6ƺJïM)Nçó#dJº'êÇ^§vÜ ].¼l@éÖ4þ¹Î[ÃWÖ70Jóy÷а¹z ÈÞ¥2´Ã/ËåßîªrÕ ¶ yt#¥û{éh5þçÂ.ÿWàÅeøeúR¸.×h^Aî @Gcº¬mÜõÝÙåÚ0ÆG¿ty&7îH#¼ìºÏ$VÙt%AÑBz9ê«×©]Üfhe"ã]¸ÎÞ$#(Çn¨×|¸Â(³Ìù])¦ÆÊ?sÕ;u
\ÑW±:~¬¼Ë_1w'éÂE°ß°OÜãçf¯P,À
-Ýw)§!¥]«9ÉU9"Gi¼¾
-ð'àüq¿v £Âé?#¢þïkd¢4W±»LÝÇ?Ǽ㨮ʱÆë¨ð+£ÜÄkH°ZÜbªlCÐáBW<öÙUa®
vËÀ3Î8müÓí³ÿ _Ûî&
+xÚY[È~÷¯PÙûª¬^h I8ëÊz'»®xªòàøÒ(F dÏüû[CgøaFMÓ}ú\¾sküÕ~å¯Þ>óå÷§»g?þ®2mVw»U*1éÊÄÒa¼º+W¼~x÷ü;Ã_µí¹ZoBxy
+O5]Fó×±ñr\¿_Ú×áLÃËÆ-hâ=½Í
di7çj½#ãÝÊÆrðHã@N¾GöÖ:ñ¾à¿êóZ§^
¼÷Iìå¼ìòøWÐhýñîo M¨,¹Ü{9"íz£
+ÒÙ:òÚÿ¾o:#ß4ñ5óU5ü®Ãsþé¦
TDºç·=qL;ñ]Y~4kgÜã¸ãêAÞwva
+dJæb_:Qòå^vÔBëÐXÐÆpt¨½¼!Ã?
+ÕCÇÓ>tV8±}]û°À@Lå9ÎU-±«ðl e°âÃ5ÂXÑ, µz
+ìë·'°íé£Aû 9èFRm"s[:¦ nÁBîÌ-ïØа½Cá0fwÖÒg1HEPÍ$«3K~·ÅGarâi¦â8nËcde/ÈëÄÀqÐîZn¨ÔÄ ¸RÇÞeKØÞ ½¼Ê_ôræ
+ñ!Òá5BÎdN\¹kq|êZªÃñèÕø±~qîÝÿå%oÈ»ûkr´]S#ZìNì±äqâ@ÃFx»8ò9õr\VÇ_zÄ.qðd¸°Ñ@DçY³ä
E£@¼BC»4bΪëxfÏ`ÝNXXÀUkâFpr¬ä×Ð)úÐnhZmý|ÔU½M¤@ñÆI2ÚÚ3«çõo>/\
+,&öÄO×,ÅjÀèægæÕ&BÈHfªrB{ÎÖ²G hcQ8Bztêký¥2a:òdØ¥ò©Hî¦0Ra»~znåôf´+ÓζÈW~6è*ïÈëPt "¡M>QnÝW a§
ÞQ~:ý`e¦,»¾ú±$gø¿OImÁhQ¦Lò;öR,f·ÙRßã|dL©^Ø_NT¾¶TºjWWÎ Ç~ð ñ(Ì8?¼Oj¸çb£®ÐÉI2?WeOEû®([~~dE hiNý<µ6PÙ[dWòji³üR^ònßPíP!ÿEïquµEÐrifuôg©=þÏìùë&íi ¥®¸FS¸D7Ú×*²©ò¾·
+t2IªÎùg_56ßCÙISÓÌ9ºXg¹ +)÷\¢"LÊ<¦Ë¥¸ÿYnJG½ü*1ÐYcĸ¨Vz4 ݶXQ{ÿÂ-lõÊ¢xªWWmëvÉ¢ðHµPÞuPg2¤½è¾Øé:°n¦¼ý.TQò©bÑChöHú4ýIʤM¹¤b¦K,ÖBz/â.Eê tÆ*sÖµ7_¾ÿõÔP xîþ\å£ÃFAäýBTpM(
+#®3jpnCO+g-×ñZ$¯ê®P?}+ÑIõZWõ<Õf¨l¢[¿*GÎ~@y¡ç@Mgl<qð÷·ÏV/wÜ>Rìº6Àtî
+¶Â¹u±ìÙ ;ÜàV1MÌk²³U¢²Ä(Ú9-zøxP((Ù9²rêâ,BÉR1¦JCòw÷É9LûeN"Ý0dùn3ÙMáSoG¥¤ú2àßU2H²-dæÀ.+p#â}@~äS]ÿ|Jé í ¥êKUTFNNñ]X
+U`8EªÏe¼¥ï=/ì Jp !öE`åºÄäFZì«Ðæ9^Î?õÝ)í\Ún\ÇÙ`˺cI¥x£
+ÝxÞFw÷*ùzhR3ØHïxÎÛðÑêúosèI4e
+Y
+l?n@áÜB>j9mþ]~ó@¥ ¢DòâaÿO&ÿ¯ÏæWÌÀ[JH'$E»µYgû³o?ycYwÎMQzjZ4ÌãIOÇfG¦ \\Æ^·µ¬Ø=k¤ÞG¼¨qi×ݬ7o´C,"×ëb¸Ù¹aêç
+ jG°¦"}
+2¼dÂC^ñÒÝ¡lOG
+,O°¹wÖÉEºy¬þ7:Ý¡b\âÄ««y7\¨bú×ä3[0ðïO µ/ä\ç̳b¿ Ï׬2EêDAB«_2Uo¬oICZ0¡ÄOªñªn]¯Q¥mñÍç"tÝLK¥¹ h¨¿Ùre=$/«êªãçSuå²å«Çìòâf¶a4\ªXÁvθpFRR4í-%V]ÓMCÉÉõ%5paÍÎ<( WM?êùnëÒ?h«ÙYÎ!ÛQÃäsÅýÈXqQ»ê õh]\/-DæÞvYÑTË.¡ý·]"G
+ÝÙS(!9{*}úîfI¸=YOÜM¸ÀÏ* Û0óV©8í%å̵°CÐ
+¥´Oh¨=ͬK
+¸ÆÙ6â9ù¯ÜL±¿£]9=üæÆt¦Fðê9µ¡þ©Ç7×åú W/>]×âÛHà3ðñ-ÅUýßyòo IÿH·°µ{e$/~äz &ò2ØÑÑÌq짫§¤7#7]m¿5C]MK¥÷¦Ì®0BêÌçlTÐ=Q7ô:µäzéªpá¼¥[ÓÔûÇ:
+í¾²^¼IU}Ï»ÿÄWÉØÝÊ·&äáoMØó¥Ùüû±ÍR° ©,ÝßKGà³üUàÅ¥ÿezÛ.7Bô
+´
+8
+<ZÑem3|ô]¶
+c|dù}éë¨ãÝÚw¤áÏ;á
î3T:^IP´@zp:µÙmF B:W¶³ãÈcG7TÂ|¸B@æÂ÷¸¼*ÿÔVïÔäÃFxk¿0ÂËʹüs7pr.\àæ+÷ÀøzÙ+#õ°¤ÂC÷g|)$¥]«9ÎTª-£4^üæ+ð
+þ8É_;@¨üñ˨ÿfzí õoÀõ5pJR&þz÷ì?#au
endstream
endobj
126 0 obj <<
@@ -406,33 +413,28 @@
/Type /Annot
/Subtype /Link
/Border[0 0 0]/H/I/C[0 1 0]
-/Rect [413.607 542.217 420.581 550.625]
+/Rect [413.607 490.871 420.581 499.28]
/A << /S /GoTo /D (cite.tjart19) >>
>> endobj
128 0 obj <<
/D [126 0 R /XYZ 132.768 705.06 null]
>> endobj
14 0 obj <<
-/D [126 0 R /XYZ 133.768 667.198 null]
+/D [126 0 R /XYZ 133.768 617.905 null]
>> endobj
125 0 obj <<
-/Font << /F81 111 0 R /F8 85 0 R /F88 114 0 R /F11 115 0 R /F92 121 0 R /F99 129 0 R >>
+/Font << /F8 85 0 R /F81 111 0 R /F88 114 0 R /F11 115 0 R /F92 121 0 R /F99 129 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
133 0 obj <<
-/Length 655
+/Length 747
/Filter /FlateDecode
>>
stream
-xÚuTËÓ0Ý÷+¼L¤Æµã8XÍ
-«"e,2iÒVÓ<h`¤ùxîÃiSTÕ¾¾ïs®c%vBOõ]ê:µÒ±ÂXÚ,e³ø±P2JË\&ãé«ÇFÝâü&S0e
-fiïóÅê!Ìb°äµÐÆÈ$NE¤"'©È·â«ï}íU~±W8¶°,øw-Z¬·ÅÃþýÂï
4Wð¶;¡eÏ®æèr]A(P,PmÙüÓ·ã%
-ª^±¾ú})¶vòÄ<PAñ=ÿtZËÌZWa䮢páRr¬¸ÿ(QÔ'î×Ltܬï$HqæÝõbøT£Ü5ìT ]dvÀ9(CîÃÐCÚ¥X]Ë®µ×nÚw²gÁ¸pTÝÉLzÏ~zâé'vhÉp0èkõ-F
-®O~ ¼`°Ëd4A`=Ø`í
¾ÁÝ÷С¶ÞÂpdÒÞ/rýÝ+æ
-ÌÆ#µí a«W7àcæƪҹÕ/Nh·c¸c9á¸;Jã
J±u³fÞQþ¦¬rSOMÅ\.Óè i¼õHWêÌÍÚ ¯ÜÑwµåZ«×%±é:uéÞ6ÄÞ@}5|¸ôdãºw
-¤T:YÝæão¾å¹oÆ¡Ü;lMPï#úµów »w`ÏJjöûÇ5ð
-Z÷
-bI[ÓmaºÂ¥»ÿXqºÒüß/µPÀ®´½w&TÒªØ$ÔÏì2´õZ/¯5ðhiÓD¡/°½ñú/þ Ãe
+xÚmUÉnÛ0½û+x!EQK7 I =¥
om,ÙF,ÉÕÒ&@>¾³PÉáìóC)±JܬԴK¡Dçþq³º\¯Î¯³L$2KëJhcd§"¶ëøé}òk´·õµ×þ tÀdµoà°¬±u(;Xû_ʪ ÎX¯Îñ kqQc`ÉGÜ)°Ðþïõ·9ñûõJSòZèÔJÆÂdVfiQ¯þ@¡QT4 'KÇ8ÿZkñ¹]}ß$
+&¯ÁÂ-¡Lf1H $J'Òz~±W9"*Å Ëþmëmð°ä~xÄ!»·-ÂaÙ1£Øº@Ôj4B<`rÃ⿾È)zÉüòá9 Ê
Ég@ô@±hÀh-3ëî@ÛÌÁC¡Ë±äü£DQ¸Ïèx{u!3ïâcm*¤Û
+ ËÄ®0FÂú°§êÁ-Þ(Íaº9Ö~Φiy'iÞCÞ¨[Õv~`ÒÔ»÷ÃÔ+±ãÓ%6°q5U}`Fcë .hì¼!&M°0ìbóßànÁ{ÈP[oGf%ÏJ¤´÷Ï'_/³bÆ2Òx¤´]IêâÙ[Å÷XY8µêÑÍZÞ)7j;qB¥½[à^õÌÄÕàçÝDÐ@`¹Gf#]ö®s/|>å];ºnlX¬µzB õúö¤®ëzFÈÜcf¤j>ç.?Ô¹÷]ë¨E¯¼TäYG2"Ffz9é
+wËh}Òå¦3.h{~£`ú¼=Îöa9ý(ÍÙÜMÿ>ì_¯É³nò5âVt.nán=F.28=·È
PëùµÖWÎð©P)`KUß³Êò´ÒNÒw'Ï6t#ÑÒ¦ à¦C
9{¢ù3óf
endstream
endobj
132 0 obj <<
@@ -1125,21 +1127,25 @@
/D [132 0 R /XYZ 132.768 705.06 null]
>> endobj
131 0 obj <<
-/Font << /F8 85 0 R /F11 115 0 R >>
+/Font << /F99 129 0 R /F8 85 0 R /F11 115 0 R >>
/XObject << /Im1 124 0 R >>
/ProcSet [ /PDF /Text ]
>> endobj
144 0 obj <<
-/Length 970
+/Length 878
/Filter /FlateDecode
>>
stream
-xÚ¥VÉnA½û+F±wz_à6
pù{GcãAðõÔÒí´X!˪®×µ¼ªî±l.Ù¼ÉO¿²QNí«½pÉ7³åèûH
-I©e2yáäl©×«ÑGøÓ¤xTnO§£·±I"y°L/e>6V!µj¦óæs;]U{ßa<1&µ»õµª]¬Æ:´?^é6ÃMÐ
-¯ÏQáæ¾Ã]=ãVl>={ÅÂöv¬c{Þ¿Nß¼UªJSCzNy(¼fH]HÆ»b1è[Ïîg7àu `ó9îàSþ¹ÀfÏ!§ C¢°håDÈÉ9n±ö
-Õ>àï Æ`#ÚÀOÔxEÒ"Ä`$&ìÎÚ3¸Ç¿A¾e¦yùê±»¼a¶¥Tûá=èÐË°bIJ»ãÊïËiì)ZÒ¦F ,LÂ1± ÷ËïnÁ6à j÷&K¿Ð 3<£L04ùj+1ì:<oÛì0GbnzFñ¸#PCÒíÙ-CÖ4Âä1zkííèY*¯òQx¢vdpØç®C¾6¥LôuæÛ¶bì²»Æ1ëYCO«êë¼|a²Ð2Í;>M( JKY¬
ù4"©úgçÄÂ×ÛÜSpÉó)ªwîr.r¥{"SGHÉg*§:<>ACSî.Ã!WW¥íÏq?Ü|ÎÓ%¶k²ÈÞÁÍRD
-R¡çrJ¥AðBÄ^ÂÁ3q·¤£øE:I7Ø$Åv±ä©È û¬ JÉçg»¿²ã£sJÚp²¢¤×íÑ%2²FÕ%P«ßHÓÑ~ôuRô u{%Q?;lW3òìü>ö1ÃâßW©¡7n3x?(8Øùp¥ 7*zVtZ±µâjÅ×J¨XnR
-o;§4zñ8c0\¯¥ÅÑÃÓ2®ûHPî¡ÊÔPijBºÊJæl@¨w¡6PaÝÁÔÜAgeþ½G¾ê?L$ÕÁì(ó? ?9r|+~þí\U
HÉÃHÖE¦Hl\|BbrÓÈ«$~¢°Þî±cèLüÔ;]X7×ÿ*@ä ðÖùAoðáyaóÌãfùëÚ¬Ò|¢7àïGS6<ÍôéèºÍJc
+xÚ½VKo1¾ó+V(])8~¬½v¤ö¶Ò Jè)ÍaK@áU6$j}çaHÚ\*;ö¼¾ùÆãEf·Ì.:òÀSÁ¯ÌT¦¼F»¬ÔNØà²á¼ó£#EYU&É®LÊä7N.ç:{¿ì|ORõRÔÞNسAçäÜgAÁ8SÆÊù¬NTÁdQv&
ʧðm1!¿]\¯&¸ò°©òɲÐUþØòNÍfCPÌ4]óþCtnjôjØn9fõÙå;6Bûü>&7'çJíÀÔ²V9( Þ±Én!^gþMÑÓÞçÃgu 0ExÚcRi¾òã!ÏMÎ`
+@!aÖÓÊ
+ï[%µXûjoñ·EÏpDÄñr¯Hl@B¹Õ6lÜ äïP
ËiÞ¾ªAåhÞp£´K¶×÷\YÅ~ÅA¢99ÍØÕ¤a¹_~½ ݨSføP»×Qú
+ ÎFÜà!!A ¨r;®XD»íH4àó¶c&æ¦a"Ýj"W#h@¥t~¹`aLrÏ
+@}Y[ÐlKϬâ.ÂjØc(Ö:±î⢡óÅm[²í¼¾ÃcÖð
+#-£Q3_E7
`¡+¤w<M( ¥JÊΧææicpbÍWØSàyvÇÈY÷F£qº'"u4PDJ©µ}9&Ü^*/
+C¡¦©í§è7utáLò¸¹BÈ**©0rOY%Ò 8adÅÞÂàF\Ïi¿I+é[¤8Ãö"3%2aµ
>ÇñZû
+Gî^ZêC7niGI§óî-R²Â¥
+°l§¿§î~ú
Rz(TÙ½¨¡5öKÂCrtõûÍüëÊ{_Eî>}
(ýþ¿cD_·Ë>Jý7Õßâ3IÂÊײÀdd¡LMKBÝ1ª¤ö¢t0Ðpæ)§¢£dâSo×öÀ¾:¸O¯²ôqZèÍÓ&衧áUÉX{F ?ýÉpÞÎð¦.ÄVí;~t~uæ
+
endstream
endobj
143 0 obj <<
@@ -1667,21 +1673,20 @@
/ProcSet [ /PDF /Text ]
>> endobj
156 0 obj <<
-/Length 1313
+/Length 1315
/Filter /FlateDecode
>>
stream
-xÚWKoã6¾çWÁd4fø(1@tÛ¦ÝöÔ
o»{PlÅ1b[®oÚýõ%ÊI6Ah8Cß<£3iUúl¿Dé¿é×ø}Ek <Ò ?;»¼!«T¨´Éf·qNU¾Î|Y)ëÊl¶È>å?M¦¥3ùrbòýîü=¬¾µ/³?_5 È©-5}2pú«3èr25ÚÛ<"LêÈ©pm6ÂèÎËë:*xëÉðB
¢Û´2¥Ø=»ÚÉÔ*wXì&S[åÝùÛó|
-ïhöÃn"ý¨9n]ÁïW<×®ú7£ ½ åwÝï ÏGXl6tB1l¢ÚC$æbÏg]ê¨ì¹@~ÈßøD±È¦ñÙƨ}»ýdZè2_ ÆÏÚ8|ÂÿÀ³ÑdðÒçÍúȯ¥Ý-*¾¼6&7ÔÊÕ% NúïyG~Pea£\? DÝlNw[§
-WÇí
-ú>Qo½0Hôc
u~ËÆæxm;
í%äìãß~.õ)A ï¥
-s<vvàH³zHÂWcìªè(jæ«è_²â \Dõ:DÒ°rñůÁ£U]?«ÓàÄø°î¸c{6=(çôr<±Ú o±×VÙÚG¢h÷ÔXS*ïÍÈX²
a¢wè`nÔé]Yå!F èoÄ6×Í-
-U[ÂÛ«x#¼
-áµùCjbü(Á [6äqB¨}/²yÌ{× ÝP
Á·6kæ$¯?°Gö#æÍ6ÒÀ¿ãà`¿gî]r£Ó:6ù~ T_ªJ;ÁT*µxêU¡m~×àA®}Èq1¸¦ x×#-ï_°Ô ê¬uùNNHÖ ÂÅQx-àìË"ÿ9&ôÁA
-˽Ä
$ªë8Ñó9Å᯳{
.X>zS;2èåîãáÒö¤½Nå,~Á;£öJ ~CÕãwG·#õ/ðÒ\¶áå~'¢·5c[*ÀÏÖ¨º¬ùrÈ>S[úÚÜɺo)|/EÏ«`C6'ìÔIï¸aø¢*ÍJ+2óâå!U"¸ds?K¤§í÷,%Å37XÂcÉ°áésÊTuò<2_FaÏóÆødAô=GÁðB`fÓºLÐãuO#Q}ų>¶hú7ë¸Lth;¤Týßq¬Eó5«5ibÖüÁhnh¢8§t½=+ =çUCUlýXÊkÉ£B»öV¼ ¡NÚJ8ï¨P_K¯¼¤Óúmvf9ÓOÈ0e*cêl¾9ûPöʤÛ@0ÆåË~íÎþ(FÓD-Mç£Â¯.2Þñ«?ru§¡Æz¯;*Ð4ì.x}à*d3*¨x´
-d".sq-ó.Vt^ÅôkùJZJËêQ;ùù¸Ù
-Å:ÞºÓb½¥qdÏ\ÜèSMìûl$©é®òc«©sû´sÃõÒØP˼Ù2AÍCqyÖ="Kê(¢·lâС´w"sOköý?:ÀZ¹}çTC}Kãx4eÌ÷lLþ
t@çtú_s<
-ÛðJs 3>(l(")ÕiüßPÅ
+xÚWKo7¾ûW,V¨Eó±ä.
+´@Ó6iÚSÝÖÒZ,iUÉÓüúÎû°ìØ0ìÉÃó²ÎÎÞéôU> ³=üñýÙÛÙÙ廳RÅRlvçTª,øRYç³Ù"ûÿ2zgòåÄäûÝø{X}o&_fõ "ãI@ÚB
éÝ_&S£ÍcEÉcÉ
+³6ÍFTjPú´,μ|WeQÅ`^¨XpVÆݳ[Àk&SgÊ|Þn`°Lm·[Ôo'¶Êïñ6¼¢Þ÷«I<tæ¸t¿_q_³é?^Ãpþ¶=ð
+ùáÍNM8ë{HÂ\ìù¬½NÈdÏêcþöÃo0el®méÚ7°¸ÝO¦
öù?kãð
+{ü×Fa¶«ø×ë#ß6´7|ùι±R®òÀ:áßñ!ûQù¦y1üµ÷²x¸Ú:U¸*-ÿ@Ø ï ¼
+Êè!>ºÐQXÇì7l<qÇ6sl<C}ÜàݯáIRJÀ}iÁ·D¸0Ro£g¦B¤åûú-yÍ|Þ¬ ?§C¡|¢aXºtãèѪª¢ÇUCçÄx±ö¸c{6è)ìçtsÜ±Ú ¯±×VÙ*$´;5ÖxK¶0Í tÚ ¼K«¸Âôý]ØÆø²¹E¡*kôv¯¤W!½6ÿ³Mô¿ÄpÃ<LUïd®EÝëîåiP®)Ãà]ë5k·?ð:Fèæõ6É ¿eçg¿cííàD§uÚmò5ý©Á«R;áT2µ¼å«BÛü¶ÆûPãRqN!
+Qq/OT4¼~Á× p}Ôº|';$jpq]<_俦>"9°Ü_H º.<?º`9ºWøË'\B}jG=ïÁ?\qQz¦Â>*¯SÙ_xQy¥ ¿¦ì
þ»£ÓQúF)ÜÇex¹ßÉÔë±õÊExgkTå+>¢Ïøè¨ìúhs'ãB¾^ôA^PÑÆlZ*T°ÁRvéÑ×vc×éM3Ð`Ù£øQtæ)±Ç=±?°IÚSâtqסègO/åSãñGã§o~ÀLÏ5Hé´?<ãÙ´=ÔãtÖ©3ª¯XvÖÇ}Mßãðz?í+ù)7ì®ã©yÈjMH¬ú?èÐ5µBç±7çýVsràp¦*¥ÿ s÷NÚ]_s¨©6R"Î[ÊUçÒl^¨¨úcvf9Ó5ÉÐh*cªl¾9ûX2D\/ÓdÚ)ËýÞý?ijP§XjÐG¹']8eã[äO}#t2t%î`w£©ß]p+zÏÅzSqk×HSìsyëó6%uö=é¦óTáÞù¸ÙöbzOgݧ¦¥:zCɸ<÷0K?6ؤÒÏF4xe[MÅ;7ÿ µ
+Qæõª¢L´t4îYRQa͸j6
+Ë'*·xµzßý¡=X#§ïR«j¨©o¨CàO¦,->Í!Eй¾£<üÇÅ9îIÇxAL
+c 3!*ðlHz"Iåã8ùsGì
endstream
endobj
155 0 obj <<
@@ -1883,42 +1888,42 @@
/sRGB CS 0.000 0.000 0.000 SCN
7.20 45.18 337.60 303.84 re S
/sRGB cs 0.000 0.000 0.000 scn
-47.94 309.58 2.92 2.92 re f
-48.56 264.62 1.69 1.69 re f
+41.09 302.73 16.62 16.62 re f
+49.40 265.46 0.00 0.00 re f
49.40 219.89 0.00 0.00 re f
49.40 174.31 0.00 0.00 re f
-48.21 127.54 2.39 2.39 re f
-41.00 74.76 16.80 16.80 re f
+48.56 127.89 1.69 1.69 re f
+49.40 83.16 0.00 0.00 re f
100.04 311.04 0.00 0.00 re f
100.04 265.46 0.00 0.00 re f
-91.68 211.53 16.71 16.71 re f
+98.85 218.69 2.39 2.39 re f
100.04 174.31 0.00 0.00 re f
-100.04 128.74 0.00 0.00 re f
-99.20 82.32 1.69 1.69 re f
-142.37 302.73 16.62 16.62 re f
+91.81 120.51 16.45 16.45 re f
+100.04 83.16 0.00 0.00 re f
+150.68 311.04 0.00 0.00 re f
150.68 265.46 0.00 0.00 re f
150.68 219.89 0.00 0.00 re f
-150.68 174.31 0.00 0.00 re f
-149.84 127.89 1.69 1.69 re f
+142.24 165.87 16.88 16.88 re f
+149.49 127.54 2.39 2.39 re f
150.68 83.16 0.00 0.00 re f
201.32 311.04 0.00 0.00 re f
-201.32 265.46 0.00 0.00 re f
-200.13 218.69 2.39 2.39 re f
+192.92 257.07 16.80 16.80 re f
+201.32 219.89 0.00 0.00 re f
201.32 174.31 0.00 0.00 re f
-193.09 120.51 16.45 16.45 re f
+201.32 128.74 0.00 0.00 re f
201.32 83.16 0.00 0.00 re f
-251.96 311.04 0.00 0.00 re f
-251.96 265.46 0.00 0.00 re f
+250.50 309.58 2.92 2.92 re f
+251.12 264.62 1.69 1.69 re f
251.96 219.89 0.00 0.00 re f
-243.52 165.87 16.88 16.88 re f
+251.96 174.31 0.00 0.00 re f
250.77 127.54 2.39 2.39 re f
-251.96 83.16 0.00 0.00 re f
+243.56 74.76 16.80 16.80 re f
302.60 311.04 0.00 0.00 re f
-294.20 257.07 16.80 16.80 re f
[TRUNCATED]
To get the complete diff run:
svnlook diff /svnroot/adegenet -r 923
More information about the adegenet-commits
mailing list