[adegenet-commits] r923 - in pkg/inst/doc: . figs

noreply at r-forge.r-project.org noreply at r-forge.r-project.org
Tue Jun 21 17:34:28 CEST 2011


Author: jombart
Date: 2011-06-21 17:34:20 +0200 (Tue, 21 Jun 2011)
New Revision: 923

Modified:
   pkg/inst/doc/adegenet-dapc.Rnw
   pkg/inst/doc/adegenet-dapc.pdf
   pkg/inst/doc/adegenet-dapc.tex
   pkg/inst/doc/figs/dapc-006.pdf
   pkg/inst/doc/figs/dapc-010.pdf
   pkg/inst/doc/figs/dapc-011.pdf
   pkg/inst/doc/figs/dapc-012.pdf
   pkg/inst/doc/figs/dapc-013.pdf
   pkg/inst/doc/figs/dapc-014.pdf
   pkg/inst/doc/figs/dapc-015.pdf
   pkg/inst/doc/figs/dapc-017.pdf
   pkg/inst/doc/figs/dapc-018.pdf
   pkg/inst/doc/figs/dapc-019.pdf
   pkg/inst/doc/figs/dapc-022.pdf
   pkg/inst/doc/figs/dapc-023.pdf
   pkg/inst/doc/figs/dapc-024.pdf
   pkg/inst/doc/figs/dapc-025.pdf
   pkg/inst/doc/figs/dapc-027.pdf
   pkg/inst/doc/figs/dapc-029.pdf
   pkg/inst/doc/figs/dapc-031.pdf
   pkg/inst/doc/figs/dapc-036.pdf
   pkg/inst/doc/figs/dapc-037.pdf
   pkg/inst/doc/figs/dapc-040.pdf
   pkg/inst/doc/figs/dapc-042.pdf
Log:
final version of DAPC vignette


Modified: pkg/inst/doc/adegenet-dapc.Rnw
===================================================================
--- pkg/inst/doc/adegenet-dapc.Rnw	2011-06-21 14:53:56 UTC (rev 922)
+++ pkg/inst/doc/adegenet-dapc.Rnw	2011-06-21 15:34:20 UTC (rev 923)
@@ -77,7 +77,7 @@
 where $a_1$, $a_2$ etc. are real coefficients)
 and which reflect as well as possible the genetic variation amongst the studied individuals.
 However, most of the time we are not only interested in the diversity amongst individuals, but
-also and possibly more in the diversity between groups of individuals.
+also and possibly more so in the diversity between groups of individuals.
 Typically, one will be analysing individual data to identify populations, or more largely genetic
 clusters, and then describe these clusters.
 
@@ -117,18 +117,20 @@
 %%%%%%%%%%%%%%%%
 DAPC in itself requires prior groups to be defined. However, groups are often unknown or uncertain,
 and there is a need for identifying genetic clusters before describing them. This can be achieved
-using $k$-means, a clustering algorithm which finds a given (say, $k$) of groups maximizing the variation between
+using $k$-means, a clustering algorithm which finds a given number (say, $k$) of groups maximizing the variation between
 groups, $B(\m{X})$. To identify the optimal number of clusters, $k$-means is run sequentially with
 increasing values of $k$, and different clustering solutions are compared using Bayesian Information
 Criterion (BIC). Ideally, the optimal clustering solution should correspond to the lowest BIC. In
 practice, the 'best' BIC is often indicated by an elbow in the curve of BIC values as a function of
 $k$.
+\\
 
+
 While $k$-means could be performed on the raw data, we prefer running the algorithm after
 transforming the data using PCA. This transformation has the major advantage of reducing the
-number of variables so as to speed up the clustering algorithm. Note this does not imply a necessary
+number of variables so as to speed up the clustering algorithm. Note that this does not imply a necessary
 loss of information since all the principal components (PCs) can be retained, and therefore all the variation in the original data.
-However in practice, a reduced number of PCs is often sufficient to identify the existing clusters,
+In practice however, a reduced number of PCs is often sufficient to identify the existing clusters,
 while making the analysis essentially instantaneous.
 
 
@@ -178,6 +180,7 @@
 Apart from computational time, there is no reason for keeping a small number of components; here, we
 keep all the information, specifying to retain 200 PCs (there are actually less PCs ---around 110---, so all of them
 are kept).
+\\
 
 Then, the function displays a graph of BIC values for increasing values of $k$:
 \begin{center}
@@ -223,8 +226,9 @@
 rarely looking for actual panmictic populations from which the individuals have been drawn. Genetic
 clusters can be biologically meaningful structures and reflect interesting biological processes, but
 they are still models.
+\\
 
-A slightly different but probably more relevant question would be: "How many clusters are useful to
+A slightly different but probably more meaningful question would be: "How many clusters are useful to
 describe the data?''. A fundamental point in this question is that clusters are merely tools used to
 summarise and understand the data. There is no longer a "true $k$", but some values of $k$ are
 better, more efficient summaries of the data than others.
@@ -261,6 +265,7 @@
 largest between-group variance and the smallest within-group variance. Coefficients of the alleles
 used in the linear combination are called \textit{loadings}, while the synthetic variables are
 themselves referred to as \textit{discriminant functions}.
+\\
 
 Moreover, being based on the Discriminant Analysis, DAPC also provides membership probabilities of
 each individual for the different groups based on the retained discriminant functions. While these
@@ -269,6 +274,7 @@
 probabilities also provide indications of how clear-cut genetic clusters are. Loose clusters will
 result in fairly flat distributions of membership probabilities of individuals across clusters,
 pointing to possible admixture.
+\\
 
 Lastly, using the allele loadings, it is possible to represent new individuals (which have not participated to the analysis)
 onto the factorial planes, and derive membership probabilities as welll. Such individuals are
@@ -329,7 +335,7 @@
 individuals and of the groups used in scatterplots.
 Contributions of the alleles to each discriminant function are stored in the slot \texttt{var.contr}.
 Eigenvalues, corresponding to the ratio of the variance between groups over the variance within
-group for each discriminant function, are stored in \texttt{eig}.
+groups for each discriminant function, are stored in \texttt{eig}.
 Basic scatterplots can be obtained using the function \texttt{scatterplot}:
 <<fig=TRUE>>=
 scatter(dapc1)
@@ -351,6 +357,7 @@
 Possibility are almost unlimited, and here we just illustrate a few possibilities offered by
 \texttt{scatter}. Note that \texttt{scatter} is a generic function, with a dedicated method for
 objects produced by \texttt{dapc}. Documentation of this function can be accessed by typing \texttt{?scatter.dapc}.
+\\
 
 We illustrate some graphical possibilities trying to improve the display of the analysis presented
 in the previous section.
@@ -378,7 +385,7 @@
         cex=3,clab=0, leg=TRUE, txt.leg=paste("Cluster",1:6))
 @
 
-We can also add a minimum spanning tree based on the (squared) distances between populations in the
+We can also add a minimum spanning tree based on the (squared) distances between populations within the
 entire space.
 This allows one to bear in mind the actual proximities between populations inside the entire space, which are not always
 well represented in susbsets of discriminant functions of lesser rank.
@@ -473,7 +480,7 @@
 
 In both cases, a new allele appeared in 2005 at a very low frequency, and reached high or even dominant frequencies a
 year later.
-Irrespective of the mecanism underlying these changes (drift or selection), this illustrate that in
+Irrespective of the mecanism underlying these changes (drift or selection), this illustrates that in
 seasonal influenza, specific nucleotides can undergo drastic changes within only a couple of years.
 
 
@@ -527,7 +534,7 @@
 \\
 
 Note that this information can also be plotted in a STRUCTURE-like (!) way using \texttt{compoplot}
-(see \code{?compoplot} for customizing the plot).
+(see \code{?compoplot} to customize the plot).
 We can plot information of all individuals to have a global picture of the clusters composition.
 <<fig=TRUE>>=
 compoplot(dapc1, posi="bottomright", txt.leg=paste("Cluster", 1:6), lab="", ncol=1, xlab="individuals")
@@ -567,9 +574,8 @@
 functions, it is possible to derive group membership probabilities, which can be interpreted in
 order to assess how clear-cut or admixed the clusters are.
 Unfortunately, retaining too many PCs with respect to the number of individuals can lead to over-fitting the discriminant functions.
-In such case, discriminant function become so "flexible" that they could discriminate almost perfectly any cluster.
-While the main scatterplots are usually unaltered by this process, membership probabilities can
-become drastically inflated for the best-fitting cluster, resulting in apparent perfect discrimination.
+In such case, discriminant functions become so "flexible" that they could discriminate almost perfectly any cluster.
+As a result, membership probabilities can become drastically inflated for the best-fitting cluster, resulting in apparent perfect discrimination.
 \\
 
 
@@ -602,7 +608,7 @@
 
 \noindent We now obtain almost 100\% of discrimination for all groups.
 Is this result satisfying? Actually not.
-The number retained PCs is so large that discriminant functions could model any structure and
+The number of PCs retained is so large that discriminant functions could model any structure and
 virtually any set of clusters would be well discriminated.
 This can be illustrated by running the analysis using randomized groups:
 <<>>=
@@ -631,7 +637,7 @@
 groups (random discrimination).
 It can be seen as the proportion of successful reassignment corrected for the number of retained PCs.
 It is implemented by \texttt{a.score}, which relies on repeating the DAPC analysis using randomized
-groups, and computing $a$-scores for each group, and well as the average $a$-score:
+groups, and computing $a$-scores for each group, as well as the average $a$-score:
 <<>>=
 dapc2 <- dapc(microbov, n.da=100, n.pca=10)
 temp <- a.score(dapc2)
@@ -701,10 +707,10 @@
 %%%%%%%%%%%%%%%%
 
 Statistically speaking, supplementary individuals are observations which do not participate to
-constructing a model, but which we would like to predict using a model obtaining on other ("training") data.
+constructing a model, but which we would like to predict using a model fitted on other ("training") data.
 In the context of DAPC, we may know groups for most individuals, but some individuals could be of
 unknown or uncertain group. In this case, we need to exclude individuals from the analysis, and then
-project them as supplementary individuals on the discriminant functions.
+project them as supplementary individuals onto the discriminant functions.
 The only requirement for this operation is that supplementary individuals have been typed for the
 same loci as the rest of the dataset.
 

Modified: pkg/inst/doc/adegenet-dapc.pdf
===================================================================
--- pkg/inst/doc/adegenet-dapc.pdf	2011-06-21 14:53:56 UTC (rev 922)
+++ pkg/inst/doc/adegenet-dapc.pdf	2011-06-21 15:34:20 UTC (rev 923)
@@ -110,16 +110,16 @@
 /Filter /FlateDecode
 >>
 stream
-xÚ…VKo£H¾çWp)îÐM74Çl2)ÒJÑÈÒ2sðØØAc/àŒüï·^Í#ÙÐP®úê«¢Óh¥Ñ׫ôž-¯nléBíl´ÜF:ó*óE”k§²ÒDËMôß&‹,ÕqNàÖÀ­­á¶Úãç4ÞºiYåÖ(ëÖ¤uÀõu‰)âž•nÃÇ=Ü.¨M&,D÷[^>‘ÔDoõ	MàÚ'?–‘öʤ.Z­Jí9Î;ŒäpJÆ‘4­xçŽcýžºô>19Åðt¯š÷:S°Úìp@Æϐ)*àF[­6UâÒxW«^´g8æ¥2fÐÖàTep[À•²¾I#
-±;gP¡]©Jï£Ef•·Ží–/‚çOɝ* C‚Í!1~´$Ad¼*`2•âçñÐ@Û<6Æ5û¡5\Z£õ;ŽÜ<¸]æ9£ ÑDé”Ï] ˆàõíJŠÕæËO|-´6Ê»“Wy(â3”¬ÐyüZSE$þ¾ç,P‚„h›Ä”¬³A‰­øÑÈFҁH¸¥¸.èóI®ýeä]Ü¿Œ{ÞOÙôVÄÁXèLyÁ3…ú–#HAwϤ‡XMQÆ
-ÐÝø4~jC·¼¡;I‰Ûp½‹½Kʳc=dx‚ܸźãïÏR
-•h±¸øöõŠØ9-Vô¬ã`ǽ¦ozƒ‚LˆÉù” Æ8e Ì¡O°0Ð*Ù´Uf,È
-emôCÖkLëWâ¸4»°Ð:7ªHíÜÏ“ÓÀïyvÜÂB<¡ü¸Fü¤ÈÖÙøíòm`þƈ¨ÓDëO›fï!U@ 2Ñ79Taó†
-»E¸‘¬£lxYÙÚ¡¿íe´:R;Ыt“ª­Ò&Œe:qÇtÂ&“× î×ÄB™‘ÔmwC6T3ÑÙQB`êãºççzèþ,Ïí8/h§½Ìz#ª6l%8àrè¼Ûü{ž·#çѯhxyÅÏâ#ª$U!òOâLkÈÏ~†
-»^Äœ?xýÍï#.Cû„nqÓqšj¥mØ¿•€2ΔÀ3ì+yT2ð»ú)·àqè¿IÃŒ±AΠè“
-£h¤ÓûèK¯\>üäž'
-ú}`ð§ö°šÆ-íñϪç؏¼mù(ÌÈJ?mW|m«ýP`ôz¤^ÂÅŸY=—	ØS$vâò#@ scã¿…é­¨®Ö×0¬ÂGºçàR¯CÕÞr-L–ÌÚ1ÏfØ.R±vçq_³aw£ó…-W’=Èþ'èî§O;
-öz4ïˆÆÝô_€†Ór`½&5un/-Šb>àM?ÿ²è\ÆÔk‘攍ÊCO羞ÃùqHl¦££:Œ¤' /¬X‡FCÃ!â֝šñ›Á!-79Ÿ„¬²lpìËKNzS‹/Ë«ÿ äë­“
+xÚ…VKo£H¾çWp)îÐM74Çl2)ÒJÑÈÒ2sðØØAc/àŒüï·^Í#ÙÐPþªê«¢Óh¥Ñ׫ôž-¯nléBíl´ÜF:ó*óE”k§²ÒDËMôß&‹,ÕqNàÖÀ­­á¶Úãç4ÞºiYåÖ(ëÖ¤uÀõu‰)âž•nÃÇ=Ü.¨M&,D÷[^>‘ÔDoõ	MàÚ'?–‘öʤ.Z­Jíç"9œ’…qäM+Þ¹c¬ßS—Þ'&'Owðªy¯3!€]Ðf‡;@fü,3¥S…¼ÑV«M•¸4ÞUǪíYóR3hkpª2¸-àJYߤ‘ìÎÔ_hWªÒûh‘Yå­c»å‹äó§ÄN ÄàcsHŒ$-I03^•ÆBb2•âçñ²¶yl`©¯Ù!Hð®ÑúGn\†.óœ³ èŠP:åsè 1y}»’bõŸùò_­ò®ÄàUŠ8Ä%+t¿ÖTÁß÷Jm“˜’u6(£?ú²‘´D né#®ú|’ky B÷/ãž÷Sv½¡\€…Δ×<S¨o9&)èî™ô€ÕeÜ ÝOã§6t˺“”¸
+Ñ»˜Ñ»¤8;ÖC†'؈À[ì ;þþ,ÑP‰ˁ‹o_¯ˆÓbEÏ:þvÜhú¦7´ä„˜œO	bŒSÊú­’M[eÆ‚¬PÖæA?D½Æ°~%ŽK³›­s£ŠÔΓûypø=‚[XÀʏkÌŸÙ:㯝¤|Ûc2#"ê4ÑúÓ¦Ùû”* P™Î荛ª°yC…ÝŒ"ÜŒH֍(^ÖDövèo{­ŽÔô*]Á¤j럴	ç2'qÇtÂ&ˆkP÷kb¡ÌH꿶»Æ!ª™èì( 0õqÝós=t	–çvœ´S at G/³žDDÕ†­$¸:ïÂ6ÿžçíÈqô+Ú^^ñ³ø߈*IÕGù'ñŽF¦5äg?Ë
+»^Ä?xýÍï‚—¡}B·¸é8MµÒ¶ìß
+࣌3%éö•8*øÝý”[ð8ôßÇ0#ÇÜ gPôI…Q4Òé=úÒ+—?¹Ï~þÔV3`ÜÒÿ¬zžû‘·-ÿ …Yé§íŠ¯mµ
+Œ^’©—0Fñç_ÁGÏeöT
+’;qùQB scã¿…é­¨®$­¯aX…	Žt
+ÎÉK½U{˵0Y2kG8ÏfØ.R±vçq_³aw£ó…-W=ÈþŒtwÓ§;{=šwDãnú/@Ãi9D/DÀ£IMÛK‹¢˜xÓȏŸYt.cêµHs
+‰FÅ¡§ó
+_Ïáü8 ›éè¨#é)ÑV¬C£¡ƒáqgÓNÍÆø̓à–›œOBVY‡68öå¥
+'½©Å—åÕîR­”
 endstream
 endobj
 70 0 obj <<
@@ -313,37 +313,35 @@
 /ProcSet [ /PDF /Text ]
 >> endobj
 118 0 obj <<
-/Length 3274      
+/Length 3086      
 /Filter /FlateDecode
 >>
 stream
-xÚ½ZY“ÛÆ~ׯà›ÉŠcÀ PUVrâ(U±UÎÆNUœˆÇ’	lˆ¥Ö›_Ÿ>g ¨#Vü°K`Žžžž>¾îA:»›¥³oŸ¥òûòöÙ׬ÌÌäI–;;»ÝÎL–%¥«f®(›³Ûõìs³Xc‹ùë…™·‹ÌÌàáÔ-–Y:_ŸWø¶ï¨ïŸ·Š³:©uH/-­Iª´bJ¯Û…­æﶜo`BOSáï®Ñ§ön±Ì³l~‡ý-þ£ž¶Úù‡¼G›ÎßS?¼>qÿY•Ì;Ï%C³7oNøH‹nx`sÏ÷´¯f…“vÄ wâZ›ƒØHc×òš?§&Ç×a ܹ1I]ˆû'ÆEwƒ¥¹*€+!Ѽ…e Íæø~ÆÞ	µ5=O=ТȨ̀–UwD	¿U†¼p»6ì¶Bæ diƒÑš?§EŠóiNKWä|&K£g˜'/³º˜ÿžÕÀ˜¡ÄÒhxH9sI]fŽ(ëŒJò:Wµ»P§<ÉËY4dÌüUk“–'[ gјßMl¡L*0ˆô36`'7àê_»û%vðâÅ‹K2&:¥yÜ!K§À×€š-“ÒÔŸ%ó	y>±P²å¯½KJ›Ç+mÐ,V¬ÙyZ±6ƒ[ëØâálèÇ€·C§Æîp9oÎ=ØŠÁ±`Ãàèáq·'òèJ"š@ À_ðš<¾'o±4E–¸:šÉ£:ÊrR²y[YpTK Øõ½ØŸšö‘	¯wò
-êVÜ:2_vá­,r$?q×?ð»8,z&^–<ñfÍ­ûØÿ½Çør&ÝîEÀ°“?u¸ŸGrßÁ‰?Ÿr—Ç®gOgË‚\þÆ;“×ý1¼‹´è¹9Éî¤S:­ØÚ¿³ã„IââN>(mh<
-ÅRæó‡hiÚ+o§é1< ±'>¢_Ìhã	‘˜†bp,òû@ € ËÃ:|± fÌ vÜ“j’Àz¯OÜwìD©ñwRHøÞi³ýØfpÆ[Ò·
-…Z¯”!w‡Ktç{HŒèþ®E}šëÅÄÑßòº÷«…ìüð´¨rP–¥­s>IRI8v‹~^ù¥i–†â<ìrW„™ãÉk5†g<ˆ¨ø4×›X°e+ºÄBïÏÂœ71:jÞÄ	‡æþŒ&dA3O„…äP³lʤ3À#«ƒÈÖ+0åsžC~	<ühyÚš!
-Qoð–]Ýhx¿‘e„—3(-ƒ½|”€$ë<îátàĽŒìÞ*Î8r{V$»BîOÑ1a7¿Â#órjÖ^?ÔàyaÿQ¥²cškÑHèÚëc´ÿ‰»Hdg¯fb;б
-œ…Lq²ÛˆçžØs
-{v+K[Lºâ"»æŠÙkšrþ­ˆ‹Á°Ÿ8‰÷‡`¼ŠqܪiùÁ,¾öRÔP¢8:­Úþ!ÝbçC+¯'7ÚÄÙ£Uò.{uºùî{dõÇ…1UÛŽáø ±úö/XÁêÄŒ’ >jËË=°‹g»ÅÁ#Á ·+rÜ%`Sø©Ûƹ€ŽBÔ…ˆ䈵iÅú"w§qß Þ‚û1ȓ*à>¡ÐD§‡fEdY¹âýÞ/ú
-dÄûv¤@ç…pÏ̾‡±›ê|‚EgÊÊÆÐN°RŒõ÷	h\z¸…u"ÍC#ǧGLûÿþ^L`º%`MëFGù#Kñæ‡Ëõm–˜Ì¯Or¾ÜD–TeþMT‰ƒ<7Ð0¬S°e
-/—S´RÓç§øL~`ÿSàÝ8XÏèØŸ&±;ÊñK3Djháô³²Ößz,Ëè©ìÙ–â\WhH;*oN‘N¤¾Wj¯¼cj#¤M³nZõÕ>ª=1¾7¯àߍž®á84Ãr+yÀå®úðWì…ÈÈÖÊ%».̐»Gœ(h’ää
-¼¾ên¸ákþùË7ÐøWµpjÚúä‚ŸèÚ©ŒËX8o¿¹±@@*ÁÕÝ¢í7X…°9o<MžWƒÈŠ}]˧Ä*”WI6–1ƒ•ú
-Ýrãbƒ¯w¢q¹)>Tbï—g.dJLßx$IéH ¾Ý»¸#s@ö–IB,jDº #FYâ²Ç‹IÀû½ “ûTŸW'‚º­¢¨çß`×
-©Ž…¹ Ñÿý‡MpÊ“€1×î·wmÈ'FÀ"vÙ)±ÛÆ”ªø05`¾N“ÔTsƒÙ—Vý‹e•:ŒÝÀ1DÛ
-÷
-´».’,sŸ\óËl¿F5s£ÝF@•ù«Ñ:Í’<÷g´ÞK¦íMéè‹-ðœåàhΪ³›ûË}×eR‡šñaG•ä¼ß‘©4‚3a‚zÈ¡áÅžcHÅÒKA#]1”Þ0­D`ÑôŒh-L®òˆkuÅ^±æ)T!UÊá^1.Kõƒhn˜"i
-\p_ÙÄšRëV¡Ô.ùe&FÉ¥:¥¬,$áã4ì$R*sh	UhК<^ͦeb­?à­nˆîÆ	¤g™N†ˆ,•ÊÂL•
-*µH‚o
-òùMP³†kÙSWBB%óÅ£;MðÒ”ÇN at Y¬[n'5û·ÆO⋱GSMZÿÄm#mr…fó™s!î`ûZÊt¹æ\ œe‘§¡|Ujù
-×A#)1+`øèS	
-º­ªA;åþÉ,߉Öñ-׸@àæÞpé˜)Ó!ùP¡ðµ -QDU[_èèù‘
-%ßpñü/Spqf˜¹nŸYMž*(ºiå¡î–ãJ¡ãDñ7-‚ÿ<â-„²S´½”àâCÀðÒäJÖÜßMà,p®Ep®ï.u·H|è[RÕ¡ÑÂNn)WÎSw¥R"‘Fv¼ëNQEcwT—X'i>
-(;/tAÓuA÷O­ÔQä53ôÜ…ª^Ë‚{ªiQ™ ÅF ¯ì'Š@ v-•ÚzlmØrl~Ñrmp³wÜçÌð|Íßbß †h!Òï®ð6ØkUù"å4Y’Ù‘P¯àŸòÿ€žóºô"G¿SX_¾0:èM½Xð¹»÷ØŽªÐÔj•E.ûHõO2}da®E¢çW”¾²öó•žWÚ‡G\âÜ2#={è‹=6‡85°°ˆ…ÿGoXråÚ_Íô‘‡ÀnÖÚëFk}å0¡ÛÄ¦Ÿ¨Ú·!³¡êi‘JÎA(GcŽ¦¦Å…Å«¸c6{:2lPÅìy
-ø@µ9#·RkÉS­M
-7¼#ÜyY1)¦¦ßK	Š:^£ü¶änŽãÂÎWÞyO¥]â5^¾~¥™+'‰$=MÉO*7¼bp£ì„êµY1U±T¨.îлK©Q¹\ )•ÑÃ;À`´Í“Bj¹#‘H‰S$üë£fšðzàŒ\D!Q@ÂO¯[þ½§Ôl‚!PÁ(P;o¾8쫨¬.ÛýÊ“äU÷>™íšáƒ¯Ø[AlþräA.âó
-Wüù—.–Ù=À®AöÌÆxuTÌã2¼™ÜH¦¿ÇCt)F9Ç;OZffl)ó§™&çÒË,µI]š¡Ì~bý	oW'¶2ÿ›³«A¹´º½æ†  áå^]1cöîtÔ**Þ?Še¯'Èü¾æ{'— z³ÉÔåžrËv꧓¨ÛÈß—!aåuRÚ‘£Uü-]Í@6;o¶ÁPƒ/F0Âîü’YÐû,|­×gØ1¾VȲrNŒ›„Gß¼éù…/{¢u.¼ÒĬsn´×ñDƒ…“ù¿$%È]=§›$Vc‹×Üm¸“>q,Ù
-ÝZ®bLêêȾkNòÏô±Q0óӐRŒl¢tŸúúNXêml*Óyð^Q#À¹FÌÇÄíñý+(Vy€²wϳùwÞÔ8¯†yÇ5±.ø4nÄ{ŸµQüÒ{KG°”ÆÐ÷4©—ÂM!¿Û¡n%‚Ó
-0!<J@¦sŽLôÛ[nCŠJÏz”Ç×bíð;ž¬ufÔ]¹¢YjqHpðrÒ|©ñŸj­¥Ì“ç>}ó\ú/¶þ‚ˆÈíäh32¸Z±€ÜM~URI™›>ÅÛ·*	ˆãbÀ˜uz‰3`Ž^ÓGÔU¾QhÜð–ó4%E¨ªÈ¶´ͳ¯BÛJ£Ï1053(ÚmUó[n »üˆG­Ùã7ìU³+Ì•dº.Ça¹áÚ÷QŒ#è{h'M«ô¢…Ïͻ°Rzñ%ÃäÖ	¬ôß%Ä7Û|U
-õ6W6ÙP¹£;ûO3ü—¢3ãj®ÐAà¬*ùš3ŒùÃí³ÿµA
+xÚ½ZKs䶾ﯘ›g*;4‚/Uå •G®Š½å(Nªâ¨yh&;C*¤feåקŸ Hq¤Ýxãƒ4$
+ ÑýáëãÙÝ,ž}û&–ßw7o¾þcafÆE‰Ëììf;3IåY1ËÒ<²I:»YÏþ17‹¥16_/̼^$fþ m³X&ñ|}ZáÛ¾¡ºÞ|geTf6CyñliMTÄKº®¶˜\Ø|¾u…¿»JŸê»ÅÒ%ÉüëküG5+,µó56ùˆ26-ößS=¼>qýIUÌ+OC½Ól^µøHƒn¸auÏ÷´®j…v4A®Ä±6°‘¦æ1ŽÃ×ý
+@
+¸rc¢2vO¤ Œƒî‹-Î*…Y‰ˆêþtq2Ç÷ÖðJ¨¬ê¸ëʼnA*Y5GÔð­NÈ+·©{‘ÍVÄD,-0óç8±_$ÅÑb™¥Ž÷äq)jôæÎˤLç¿g30fh¡6*n’ϲ¨Ì“[¤‘Í2h¹Ò©Ù=3'¹|4Oþ™Tk#篋MafA›ßM,!
+pˆø3`'•¿vöK¬àââ⹃œ\›<îpJm?¯4›G¹)?K!æòvb(dó_«ú,Ê­GÚ [¬Ø²]\°5ƒ
+[›±ÇÃÞж´CÐgÏ°wç|Å`[ðaÀzxÜíI<BI ¤ø¨Éí;B‹¥I“(+“¡›<*Pp&…!Ÿ·… Z‚À¦ëÄÿÔý°Žð¥½Û6(¬¸tä¾áµr$œ¸ëø] ‹ž	±e	‰7k.݇ø÷ÿáˉl»ÃJþÔàz	¾{;—Ǧc¤³yJP…¿áÊäuìßE[ô\µò€+iTN-¾öÄïœÐéA ®õ‡Ò†ÖÀ­P-¹›?CÓZy	ØM·á…=qóý`F0î¨i¨†ŒÕ@¸xo,#E×à vÍÄç1ÜöKÄ:TOƒº@	Ú™§BJñÕï¡^¸´B…ÞÒ€*ò&º©y»¶9ÉQÚqs:iü°c
+`c^Z4e7¬R¸_iãÃÓ¢p`:K[:ÞW2P0=%ü.så—ª®X7Êpƒ°*{yrÔy­ŽRqA…‚÷v½	­	K¶biÐ@¶èþ$“óGÏ‹h±©Ë÷€;Öõl‰É'É”ƒ'ÀNVqToδ•o¹¡>x2Rs·5£ØpËÀ7jÞmd™Ë‰Ü•†é·xeéÜp
+—‹e'Ì´P·Ê:Ž\Á8‹bW8û6Ø&¬ÓMcžK[­½}*ÅÁýÂú£jeÇ2×l‘Xµ×ÇÀž¸ŠTæmRÔŒÛ~f'Ó3ÙmÇ'ÖÜ{™¥M'9MÎ3c¨Éçߊº˜ûŽ“r9/¶[U5?øÅ²^àŠ%Š0£ÓØ[ ¬â²-†"y=	åè'Ï]	8Ÿ­QÌéòûpª?-Œ1h*Xvì·8›owÁVFÆÀ™iã(K%Äx`Àg¿ÅÆ#ÅàlWã90Uø)”醑¶Â	(„¾óùµ©ÅûÈŠO÷!0À¾àǾ&ø礸ïPd"è¡[‘X6®p½9¯q'¢¸Ah¿ÐîÙ‚+±ÃTãÃ-ÚS&T6$‚°ƒ…2®¿OEØàÜ“¿àQ©*Ù>ÝbZÿ/ðw1Áð–À<m6ZÚO¬ÅËŸo“È$~|ÒóóE$Q‘»QDD½½Ãæ0¿˜<2©WÈ»)Y1Ú¯Ï'ýÌùÀú§¨¼É`<£mÿ6ÉäóÒ~ñ	‘ZØý$/†›õ×ΖyáôT,ms×:ÒNšJÅû6°I"Ø÷*íÊSðnêuY+VûS]ä‰ó½¿‚—º»†ÏYÙ·’î,†_1
+‘“­u–]Hs€É3QÒ$58“÷ðzÕ\rÁ×üóço ð/êáT´õ¡" ©§â/ca{¼üæÎRPwƒ¾_!GµŽ
+Hã\18Y±®©y—Ø„\%c3ùX)VxêæL6$ªÙüî@äA,Ιô¥Ô£ŸK²ž*³ü€*C)ÚdÏé~'šan
+Z*ç€X.‘ðẌlZŒ²œ8Íð¼˜$¼?Ã1Î^ø¼j<‰h‰ê²Ò´œƒU—dbØæ> DGü÷vÁ)$g.³ßÚpžxî”±ËJiºu?q\EpL
+&_ÆQlŠ×`0ùÒ¦±Xq†g7ÌNÛ
+*÷ƒ*¬»L£$Ɇ±ÜÀÄÆ!ñ«Ô27JÙm©ÑüÊÁi'‘s~Ö{‰»½+}*°†9'€æ¤6ûÀ´¹{¾î2Ê>ÃCó°£¼μۑ«5‚3áÂzа‹rÏ1¥bíÅ`‘Y:t‹Ðo˜XT3š^†ÚL¹Å¹,‰r¯Ðò”ª©õÆð^l1NKRõE67‘4£ÆÎ?N¿$6ÊãR³X}â]âËD6Œ‚K¥$O%àã0¬-åJúœ4XG³qYë7x«Ë_Gb;‡q é§L;CB–*e	ÇL™9Šà{7ÿ±êͬâÌöÔE#¡þ‚h g`	^›òøÀ(«uËådfÿÖ4y+XŒ5jÒø-—¬)K5šO²¬?w°|-I;§1(g™º¸OfåšÌÂqÐIòqåPB
+š­šA=ÿä–Äêxˆšó
+œ ÈæÞqi›)Ò!ýP!õ™!MQ9\Ÿèèø‘9ßp*p‡E¯)N²¹§AÔ@§Ò‹Ù´ñP(wË›q&ÑñŒçoœöøyÄ;‰8ÈNÙÔR€‹=€—J('HÚx¢°æºðÖh‚g¸¦=¸~xn»i䏾%e*Mì8K±²‹³3™9Ù¨qÇ»¦
+2»£BbÅ.e‡w^馁„·QUüs×',k.©52—ë"Rm¿¿ýé*οט .r|šn„ƒœ¤)
+Ü„²_Õ/çðrÛvgáëž')7zE‰¿ˆÒ49ÄL-6É ­{…(åÿš]&h6¬	ó·eî3ǁwJ®Ñ•C¦\bÒÑó@¢Êezvß±Ž’µÐm”?lÏ)ÅjgiùùÞÁÃìå·•Ñ”NÁ1Â
+$ˆ–j
+“uÈ¿½ñ;¹ÙJ©zÕ…lžóCº\eð ‡)®\DE’Úb)äȃL}ÆÄŒX‘žQÊbí„ÊóÇä_×h“ ̝ñ|aÓÎá€Oò¡iã0¸­\Ú¤IÊ@¤ŠH!8z'¾. ÑI¾Šê®q¨-aÓqàj(éªUuo²µ
+½à¼__‘÷S˯‰ÎT‡0=•ê‰µá6C˝8&&rÜ!_såXaÊÖ :eÒJ_¬¹dE«k•vßsìW÷
+”"€Ü0ᯇž ‡TÔåów×W÷¾÷Á­ü™¹–ŸÚ±à¯ú0XÙãWSš€a°¿ÓÓ›­°_áï7V>w±æÚ[¹¸JRºZ¢2ºfríɽDºYøÌÙz²b!ƒ	V²pcöAÝX&K”ý_ƒè$Ü7ZÕë_¼ì—u—09⬥1>B‚‰ Ž
+›ÿ/PǼ&Á×\àù	¾Üû(¦õÜèH®jøSŸè#嶒}Á—þzJ’zÊÒŲ·Œ,$µ%%×ãLð*#››¡N{Çtgˆ
+Wmû ‡
+|¢îz	/u’Á©Ž]Özˆ/#”r’Ï‹øå†(P7
+•ÎZ<†—(Ž³[ð¥ºs‰¿àÅç#ŸÎÿ%1ÑU[¯?{ª;iOǦ“/…Ö‚9«¾Ý`û°íÙcØË{ù» hF7º.é—À…ƒõ¶á9	6 KûK~|žŽXý™™oý1Ëd</‹ù÷~V¥b);˜Æü¢L=e#ßUH‰ÞÖcë}pAH¤")ÞX)Lw¤œ'îN8ÜuSKåϝJoêSgÖwJÊW.jA_ˆxòûð¸átµf#¡VÜþ	>áazZnŽp‰^Ê0z)ùÄ>Ô£8ô-TW¹°^ÿQ”’Ó'¶ŒŠBnÅ’A›?ܼù/”†œ
 endstream
 endobj
 117 0 obj <<
@@ -360,38 +358,47 @@
 /D [117 0 R /XYZ 133.768 667.198 null]
 >> endobj
 6 0 obj <<
-/D [117 0 R /XYZ 133.768 368.717 null]
+/D [117 0 R /XYZ 133.768 356.762 null]
 >> endobj
 10 0 obj <<
-/D [117 0 R /XYZ 133.768 340.081 null]
+/D [117 0 R /XYZ 133.768 328.126 null]
 >> endobj
 116 0 obj <<
 /Font << /F81 111 0 R /F8 85 0 R /F11 115 0 R /F7 120 0 R /F72 113 0 R /F92 121 0 R /F94 122 0 R >>
 /ProcSet [ /PDF /Text ]
 >> endobj
 127 0 obj <<
-/Length 2432      
+/Length 2572      
 /Filter /FlateDecode
 >>
 stream
-xÚ­YK“›ÊÞûW¨ì,P•Õ¡ih`r8÷Vâ8‹ÄOUŽBÅtÙžŸójh$fb'^ŒhšîÓçñWO¸Ú¯ÂÕ›g¡<¾}öÛ?gz¥µÊ“$ZÝîVÚ•Úle“TE&YÝnW‚H­u­7ZGqðÆÍzcÒ$8u¼”ëõÇÛ¿¹U®rY$®6:SN 2o·°®jÖQ0:ü+Ô1î,è
-þZ¤klÐîø‰ó÷Ë^Î=üàlÕÁO_RÚÙó¢¢\Gip/äªÏxTµåowøò Lú\ê,WI’·ÄåNv7ð‡£ì%üÑùt”° ÌÅ•Ü6U™MAµÞÄIÜ:¶„íÐkøà‹/zéø$ ¾ÚD`Ž82 O2„ƒ¢Á•»ÇG ‰‚Qu8F)HǾç,…qÏsï~ñ_ò†¢ÿä”°¿&GÛÁ ð’CË“ý	ž6¨P˜Šöàm$mÑ1d|$pDCÝñžŽ—¢Õñ‰bTÄ.qP‘Pá\üwðáצb0<Ï™¥(ªµðdmpnÄœUßóÌ(Œ‹nOVL2e\bÆ&*Ϭ3q#89	VŠkLDø•qÈúInñ¬ÏA]ÅÐÛÄ‘ä/hœ4§­³ÚÅˆ‚A­}u,¦îÄO×,%jÄèæˆg#­ÕÆhÀÎU^ Öömw¸'KnLh“Q8Azrêkýe©²&›xC2ìRÅ\$“‰•IßO»VNŸ`F»òÈÛ‡*ÌG=SÃùÈ(›äO„!´É§u¨ØW ¡ÆÓLðe’ŸN?8™;’À÷-& @$@ñ£ÿ‡M ÷£Å¹²é7í¥X
-Ì!zÏ,Ef`Œó‘±ž9#¾»ýùèEåkKåÆ·Tóh@¼b¸JÃìðx쀈Ç&
-Ž½´Oj¸ç좮Ð)H2Œ?iP\Œ«h_ôäÄ([Ñ=°¢4(¾€t?¸Ä¢”.P‡ì;d÷§"fXœkÂKþòó[¤ò_$ðWWKQ-—åNG@ÿùÿ³OjUƾ›@f FÚ s»€  ©XÝDa¤â8åÙ–+S­t”^ÀÄ€ª~ì«ÆåûCÉSó̉(sB*™9&¬¤ >ÜØ&Û‰<¦Ë¥¸žÿ9n¶y*1P'ïÇ)âÌ\4RÑd f7HvIü·Pjrq6´*“9(}90GøY^©*ú~A êLÇ4³Ý73;]Vãg
-Á;Ù rÑ©b‰ÉChöHúD9–LÌa’2i³]Rq„‚fK,ÖBz/â.E•ê ì‚Uæ¬%ko¾Œ…|ÿ·wRCn’K÷çÚ¨˜6Öqð’¤Â„k!Ú£ã#±˜ëŒÚÜ¡›à0Ð
-8Ëõ¼É櫺+&”ãch%º ‰©^뫁§zÑ•Ms
-çWÛ‰³†‡P^(ò5¨©ÃJÿxólõAZ¾q 
-øH±ëÚLþÜf—®à*œ·¾"–=;`g£ÜðÁ*Á¢‰ùrc`
-Rv¾JUž†š¢Í”Ó¬J­~d%wGvA@±­FTYS*ÆLEüýýbrÓᶠ‘Þ’0d­§wSxãÔÃÛQ)%©£>ø÷•Œ"’¬d£9B¬ë!IŠxù”ç$d?<ŸSzD{D	¢~¬g¬¢2
-rŠÂ*”lñ§Hõ¹ŒïhÏK7ØÎ%¸J€ûb ­•ÒÿiI¨L¨/s$¼‚õ”Ý)í•\–FX¹Íðk6زkÏäÙœîÅ]øëÇó.2฿çP‰Œr²uMj	ð›ϹÂð>ZÝRßó}N=ID™ Ú¾²9~Úx.0ƒÂo
-ùªåübó7aú
-›Cxb•„bÌ/€ø÷;{™ýzggþNfà
-%ˆ¤’¢½sY”^ŸÚÿm'oëžì¢)JOM‹†y8Iñ‰óجâáÈ€‹ËØ3ⶖ›±g•vAä}ÌÛÊ—öýÍz£CÉ1„Á­{ÄŠ¯©©¬k‚Qï*$°U;‚5)èãTÕòŠ—îµd3|;R`¡|‚ͽ·îH.ÒÈdõ¯èt‡Šq‰¯®æýpé‹úš|æŽ%ԁ
-áöåÁ‘œ«;È<+vQñK‡°Ê°0k$Ô‰‚>…V¿d2ªÞXß“†0´`B‰ŸTãUýº^£JÛò»Ï5"tÝ–ç	LKåù h¨¿¹ãÊzI^VÕUÏ離å²åIyvEys±ža4^ª8ÁvÞxpFRR4í–-%V„]ÓÏ‚CÉGdˆzAÃ’'¸°f/Ž<ž( WÍ0éùnë­~ÐgŸ™åL²4L>WÞOl€†¹«n	PÎÅ£%!‘9†·[V¶[ªe—Ðþ÷]"GMSÔJH΁JŸ¡¿Y:·µ'牻¹÷#øY%z¼
-Ã1o•ŠÓ]R^q¦vȺÁa+íÃ#jOÖ%\ãlCAqˆœüWKn¦ØßÑ.‹’²]Ì¥ØCWoݍéLà5pjCýc5N8/o¾^—/èu~Y½„t]‹¿!dàãWŠ«8û;¾óä	'ßH“ÿ‘nakÿÊIž9ýÈõ L
-?½”2ØÑÑÌqꧫš§¤·7=oA6ƺš–JïM)Nçó†#d”‡œJº'êÇ^§v•Ü ].¼l@éÖ4þ¹ÎŒ[ÃWÖ‹70™Jóy÷Ÿ†Ð°Œ¹z ÈÞ¥2Ÿ´Ãž/ËåßîªrÕ ¶ yt#•¥û{éh5þçÂ.ÿWàŒÅeøeúR¸.×hƒ^A“î ‡@Gcº¬mÜõÝÙåÚ0ÆG¿•ty&7îH#¼ì„ºÏ$VÙt%AÑBz9ê«×©]Üfhe"ã]¸ÎÞ$#(Çžn¨„×|ƒ¸“›Â(³€Ìù])¦ÆÊ?sÕ;u…\ŸÑW±:~¬¼Ë_1w'éÂE°ß°OÜãçf¯PŒ,À’
-Ýw)§ž!¥]«9ÉU9"Gi¼¾
-ð›'àüq’¿v £Âé?#¢þïkd¢4W±‰»L݉Ç?­Ç˜¼ã¨®Ê±Æë¨ð+£—ŠÜ‚ÄkH°ZÜbªlCÐáBW<öÙUa®Œ…vËÀ3—Î8žmüÓí³ÿ _Ûî&
+xÚ­Y[“›È~÷¯PÙû€ª¬^h Iœ8ëÊz'»®xªòàøÒ(F dÏüûœ[CƒgøaFMÓ}ú\¾sküÕ~å¯Þ>óå÷§»g?þœ®2•mVw»U†*1éÊĉÒa¼º+W¼~x÷ü;Ã_µƒí¹ZoB“xy
+O5Ž]FóŸ×±ñr\€¿_Ú†×áLÃËÆ-hâ‹=½Í…di7çj½‰#ãÝÊÆr“ðŸHã@N¾GöÖ:ñ¾à¿êóZ§^…Œ¼„÷Iìå¼ìŒò”øWÐhýñîo ’M¨,¹Ü{9"íz£
+ÒÙ„:òÚÿ¾ƒo:#ß4Œñ5óU5ü®Ãsþ馅TDºç·=qL;ñ]Y‘~4kgÜ㸖ãêAÞwvaƒ
+dJæb_’:Qòå^vÔB똚ÐXÐÆpt¨½¼!Ã?
+ÕCÇÓ>tV8±}]û°À@L僐9ÎU-±«ðl e°âÃ5ÂXщŠ, µ‚•z
+ìë·'°í霣Aû›•	9èF‰Rm"s[:¦ nÁBîÌ-ï„Øа½Cá0fwÖÒg1˜H€E€P͐$«3K~·Å‡Garâƒi¦â8n‰Ëcde/ÈëÄÀ–qÐîZn“¨ÔÄ– ¸RÇޝeKØÞ	½†¼Ê_ôræ“
+ñ!Òá5BÎdN\¹kq|êZŒªÃñèÕøœ±~qîÝÿå%oÈ»ûkr´]S#œZžìNì±äqâ@ÃFŽx»8ò9õr\ŠVÇ_ŠzÄ.qðd¸°Ñ@›D†çY³ä…E£@¼BC”»4bΪëxfÏ`݃NXXÀŒ‰U–kâFpr¬äטÐ)úÐnhZmý|ÔU½M¤@ñ‚ÆI2ÚÚ3«ç‹õo>/\
+,&öÄO×,ÅjÀèæˆgæ­Õ&BÈHfªrŠB{ÎÖ²G ­hcQ8Bztêký¥‰2a:ò†dØ¥ò©Hî¦0Ra»~znåôf´+ÓζÈW~6聜*ïÈëP™t "¡M>QnÝW a€§…Þ—Q~:ý`e¦,—»¾ú±$gŠ•ø¿OImÁhQ¦Lò;öR,f·ÙR†ß‘ã|dLœ©^Ø_ŽNT¾¶Tº–jžˆWŒW‰ŸÎ Ç~ð ñ(Ì8?•¼Oj¸çb£®ÐÉI2Œ?‰WeOEû®Ž([~~dE hiNý<µ6P‡Ù[dWòji³üR^ò›ŸnßPíP!ÿEïquµEÐrifuôg©=þÏì“ù‘ë&í™i œ¥®¸F€S¸D7Ú×*Š²©ò¾·
+t2ƒIªÎùg_56ßCÙISÓÌ9”ºXg¹Ž	+)ˆ÷\¢"LÊ‘<¦Ë¥¸ž‚ÿYnJ‰G½ü*1ÐYžcÄ™¸¨Vz4 •€Ý¶XQ{ÿÂ-”šlœõÊ¢xªWWmëvÉ¢ðHµPÞuPg2¤™½è¾™Øé:°†n¦¼“ý.TQò©b‰ÑChöHú4”ý‡IʤM¹¤b‚¦K,ÖBz/â.E•ê tÆ*sÖ’µ7_†ˆÂ¾ÿõÔP ›xîþ\å£ÃFAäýB’T˜pM(
+Œ#®3jp‹n‚CO+Œg-×ñZ$›¯ê®ˆPŽ?}+ÑIŒõZWõ<Õ‰f¨l¢˜“[¿*GÎ~@y¡ç@Mgl<qð÷·ÏV/w܏‚>Rìº6“†ÀŸ™tî
+¶Â¹u±ìÙ ;Üà†V1MÌ—k²³U¢²Ä(ÚŒ9-z“øxP((Ùž9²rêâ,BÉšR1¦JCòw÷‹É9LûeN"Ý’0d­ùn3ÙMáSoG¥¤Žú2àßU2ŠH²’-dŒæÀ.+€p#â}@~äSž“]ÿ|Jé	í	¥êK—UTFNNñ]X
+U`8EªÏe¼¥ï=/ì œJp• !öE`åºÄäFZì«Ðæ9^Î?õ˜Ý)í\–Ún˜\Ç­Ù`ËŽºcI“¥x£
+ÝxÞFw÷*ùz“­hR3ØH€ïœxΆÛðÑê–úžosèI4e’ˆ
+Y
+lŽ?n˜@á‡ÜB>j9mþ]~À³@¥ ¢DòâaÿO&ÿ¯ÏæWÌÀ[JH'$E»µY”gû³o?ycYwÎMQzjZ4ÌãIŠOœÇfG¦ \\Æ^·µ¬Ø=k¤‚ÞG¼­¨qi×ݬ7o´C,"×ëb¸Ù¹aêç
+	”jG°¦"}œ
+2¼dÂC^ñÒÝ¡–l†OG
+,”O°¹wÖÉEºy¬þ7:Ý¡b\âÄ««y7\’¨bú×ä3[–0ðŒïO µ/Žä\çƒÌ³b¿ Ï׬2E—˜êDAŸ‡B«_2Uo¬oƒICZ0¡ÄOªñªn]¯Q¥mñÍç†"tÝ—LK¥¹ h¨¿Ùre=$/«êªãçSuå²å«Çìòâf¶ža4\ªXÁvθ—pFRR4í-%V„]ÓM‚CÉ’†Éõ‚†%5ŽpaÍÎŽ<ž( WM?êù‘nëÒ?h«’‹ÙYÎ!ÛQÃäsÅýÈXqQ›˜»ê– õh]\/-DæÞvYÑ–TË.¡ý·]"G
+ÝÙS(!9{*}úîfI•¸­=YOÜM­¸ÀÏ*	†Û0óV©8í%å̈µ°CÐ
+¥´Oh¨=ͬK
+¸ÆÙ‡‚6â9ù¯ÜL±¿£]9œ„Š=üæƆt¦Fðê9µ¡þ©ÇŸ–7×åú ›W/>]×âÛHà3ðñ-ÅUýßyò„•o IÿH·°µ{e‚$/œ~äz &ò†”2ØÑÑÌq짫š§¤7#7]m¿5”C]MK¥÷¦Ì®0BêÌçlTÐ=Q7ô:µ­äzéªpá¼¥[ÓÔûÇ:
+í¾²^¼IU’}Ï»ÿÄWÉØÝÊ·&äá‰oMØó¥Ùüû‘­±ÍR° ­©,ÝßKGà—³üUà‚Å¥ÿez“Û.7Bô
+š´
+8
+<ZÑem3|ô“]¶
+c|dù}éë¨ãÝÚw¤áÏ;á…î3ŽT:^IP´ž@Žzp:µÙmF B:W¶³ãÈcG7TÂ|ƒ¸“›B@æÂ÷¸¼*ÿÔVïÔäÃFxk¿0ÂËʹüs7pr—.\‡àæ+÷Àøz€Ù+#õ°¤ÂC÷g‹”“|)$¥]«9ÎTª-‘£4^üæ+ð
+þ8É_;@¨üñˈ¨ÿfzí Šõ•oÀõ5pJRˆ&‹þz÷ì?Œ#au
 endstream
 endobj
 126 0 obj <<
@@ -406,33 +413,28 @@
 /Type /Annot
 /Subtype /Link
 /Border[0 0 0]/H/I/C[0 1 0]
-/Rect [413.607 542.217 420.581 550.625]
+/Rect [413.607 490.871 420.581 499.28]
 /A << /S /GoTo /D (cite.tjart19) >>
 >> endobj
 128 0 obj <<
 /D [126 0 R /XYZ 132.768 705.06 null]
 >> endobj
 14 0 obj <<
-/D [126 0 R /XYZ 133.768 667.198 null]
+/D [126 0 R /XYZ 133.768 617.905 null]
 >> endobj
 125 0 obj <<
-/Font << /F81 111 0 R /F8 85 0 R /F88 114 0 R /F11 115 0 R /F92 121 0 R /F99 129 0 R >>
+/Font << /F8 85 0 R /F81 111 0 R /F88 114 0 R /F11 115 0 R /F92 121 0 R /F99 129 0 R >>
 /ProcSet [ /PDF /Text ]
 >> endobj
 133 0 obj <<
-/Length 655       
+/Length 747       
 /Filter /FlateDecode
 >>
 stream
-xÚuTËŽÓ0Ý÷+¼L¤Æµã8XÍ
-«"e,2iÒVÓ<h`¤ùxîÃiSTÕ¾¾ïs®c%vB‰OõŸ]ê„:µÒ„±ˆÂXÚ,e³ø±P2J“‘Ë\&ãé«ÇF‹Ýâü&S0e
-fiïóÅê!™Ìb°äµÐÆÈ$NE¤"'©È·â«—ï}íU~„±Wƒ8¶°”,øw-Z¬·ÅÃþý–Âï…4Wð¶;¡­‡eÏŠ®æèr]ƒA(P,PmÙüÓ·ã„%
-ª^±¾ú})ˆ¶vòĐ<PAñ=ÿtZËÌZ†Wa䮢páR˜r¬¸ÿ(QÔ'î×Ltܬï$HqæÝõbøT£Ü5ìT‚ ]ŽdvÀ˜9(CîÁÐCÚ¥X]Ëœ®µ×nÚŽw²gÁ¸pTÝÉLšzÏ~˜zâé'žvhÉp0考kõ‘-FŒ
-®O~ ¼`°Ë†d˜4A`=Ø`Ší…¾ÁÝ‚÷С¶ÞžÂpd‘ÒÞ/ŸrýÝ+æ
-̘Æ#µí a«W—7àcæƪҹÕ/Nh·c¸c‘9†á¸;Jã…J±u³fÞQþ¦¬rSœOMÅ\.Óè i¼ˆ˜õHWê̇ÍÚ	¯ÜÑwµåZ«×%Š±é:uéÞ6Ä„Þ@}5|¸ôdŒãºw
-›¤T:’YÝæão¾å¹­oÆ¡Ü;€lMPï€#úŒµŽów ­‡»w`ÏJjöûÇ5ð
-Z÷
-bI[ÓmaºÂ¥»ÿXqºÒüß/µPÀ®´ž½w&TÒªØ$ÔÏì2­´“õZ/¯5ð•hiÓD¡/“°—½ñú˜/þ Ãe•
+xÚmUÉnÛ0½û+x”€ˆ!EQK7 I› =¥…omŠ,ÙF,ÉÕÒ&@>¾³P‘œ†Éáìó†C)±JܬԴK¡Dç‰þq³º\¯Î¯³L$2K”ëJhcd§"¶‰ëøé}òk´·õµ×™þ tÀdµoà°‘¬‡±‡u(;Xû_ʪ ÎX¯Îñ 	kqQc`ÉGÜ”)°Ðþïõ·9ñû—õJSòZèÔJÆÂdVfiQ¯þ@¡Q’˜ŒT–4	'KÇ8ÿZkñ¹]}‡ß$
+&¯ÁÂ-¡”ŠLf1H ™$’J'Òz•~„±W9"*Å Ëþmƒëmð€°ä~˜xÄ!»œ·-—aÙ1£­Øº@Ôj4B‚<`€rÃ⿾†È)zÉüòá9 Êš…Ég@ô@±hÀh-3ëî@‰–Û’ÌÁ„C¡Ë±äü£DQž¸Ïžèx{u!Š3ïâ˜cmŸ*¤Ûš•
+  Ë‘Ä®0Fú°§êÁ-Þ(Íaº9Ö~Φiy'iÞCÞ¨[Õv~`ÒÔ»÷ÃÔ+±žã„Ó%6°q5U}`Fƒcë .hì¼!&M°0ìbóßànÁ{ÈP[oGf%ÏJ¤´÷Ï'_/³bÆ2Òx¤´]I˜êâÙ[Å÷œXY8µêÑÍ–ZÞ)7j;qB¥ˆ½[à^õÌĉÕàçÝDÐ@`¹ˆGf#]ö®s/|>å];ºnlX¬µzB Œõúö¤®˜ëzFÈ„Ücf¤j>ç.?Ô¹÷]뎨E¯¼TäYG2‹"„Ffz9é
+wËh}Òå¦3.h{œ~£`ú¼=Îöa9ý(ÍÙÜMÿŽ™”>ì—_¯˜€É³nò5âVt‡˜.nán=Fœ.28=·È… PëùµÖ‹W΄ð©P)`KUß³Êò´ÒNÒw'Ï6t#ÑÒ¦	à¦C™…9{¢ù3óŽf
 endstream
 endobj
 132 0 obj <<
@@ -1125,21 +1127,25 @@
 /D [132 0 R /XYZ 132.768 705.06 null]
 >> endobj
 131 0 obj <<
-/Font << /F8 85 0 R /F11 115 0 R >>
+/Font << /F99 129 0 R /F8 85 0 R /F11 115 0 R >>
 /XObject << /Im1 124 0 R >>
 /ProcSet [ /PDF /Text ]
 >> endobj
 144 0 obj <<
-/Length 970       
+/Length 878       
 /Filter /FlateDecode
 >>
 stream
-xÚ¥VÉnA½û+F‡±wz_à6…pù{G‰cã‰AðõÔÒí´“X!Ëžª®×µ¼ªî±l.Ù¼ÉO¿²QŠNí«½pÉ7³åèûH
-‚I©e2–yáäl©›×«ÑGøÓ¤xTnO§£“·±I"y°L/eŒ>6V!µj¦óæs;]ŒU{ßa<1&µ—»õµ‹ª]¬Æ:´?^é6ÃMÐ
-¯ÏQ™áæ¾Ã]=ãVl>={ÅÂöv¬c{—ƒÞŒ¿Nߟ¼UªJSCzNy(Œ¼fH]HÆ»b1žè[Ïîg7àu‹	`ˆóŽ9•î‚–à›Sþ¹Àf˜Ï‚!§ C¢°™håDŒÈ­É9†n±ö
-Õ>àï Æ—`#ÚÀOÔ›xEÒ"Ä`$&’ìÎÚ3¸Ç”¿A¾e¦yùê±»¼a¶¥Tûá=‡èÐË°bIJ»ãÊïËiŸì)ZÒ¦F ™,LÂ1± ÷ËïnÁ6Ôž j÷&K¿Ð ‰3ˆ<£L04ùj+1ì:’<oÛì0GbnzFñ¸­#‚P›C‚ÒíÙ-CÖ4ÂäŽ1€zk펄íèY*¯òQx¢v˜dpØç®C¾6¥Lôu•žæ‹Û¶bì²»Æ1ëYCO«ê—뼍|a²Ð2͉;>M(	JKY‘¬…ù4"©úgçÄÂ×ÛÜSpÉó)ª‘wîrŽ.r¥{"SGŠHÉg*§:<>—ACSî.׆!WW¥íÏq?Ü|ÎÓ%¶k²ÈŸÞÁÍ•RD
-R¡ç‰rJ¥AðB†Ä^ÂÁ3œq·¤£øE:I7Ø$Åv±ä©È	û¬ JÉçg»¿²ã£sJ–Úp”—ˆ†²¢¤×íÑ%2²FÕ%P‡«ßHÓÑ~ôuRô Œu{%Q?;lW„3òìü>ö1ÃâßW©¡7n3x?(8Øùp¥ 7*zVt­˜Z±µâjÅ×J¨•XnR
-o”;§4zñ8c0‚\¯¥ÅÑžÃÓ2®ûHPî¡ÊÔ›PijBº‡ÊJ敘l@¨w¡6PaÝÁŠÔÜAŠge€þ½G¾ê‘?L$ÕÁì(ó?	?9r|–Ž+~þí\U…HÉÆžHÖE¦–Hl\|BbrÓÈ«$~¢°Þî±cèLšüÔ;]X7׉ÿ*@ä ðÖùAoðáya‰šóÌãfù‘ëÚ¬Ò|¢7àïGS6<Íô›éèºÍJc
+xÚ½VKo1¾ó+V(‡])8~¬½v¤ö¶‰Ò J­è)ÍaK@áU6$j}çaHŠÚ\*;ö¼¾ùÆãEf·™Ì.:òÀSÁ¯ÌT¦¼F»¬ÔNØà²á¼ó£#EYU&É®LÊä7N.ç:{¿ì|†ORõRÔÞNسAçäÜgAšÁ8SƈÊù¬”NTÁdƒQv&…ʧðm‹ž1!¿]ƒ\¯&¸ò°©òɲÐUþØòNÍfCPÌ4]óþCtnjôjØn9fõÙå;6‹Bûü>&7ƒ'çJíÀÔ²V9(Œ Þ±Én!^g“þMÑÓÞçŽÃguƒ 0EƒxÚc†Ri¾òã!Ï„MÎ`
+@!aÖÓÊ
+ï‘[%‚µœXûšjoñ·EÏpDÄñšr¯Hš‡l‰@B¹Õ6lÜ äïP…Ë™iÞž¾†ªAåhÞpŠ£´K¶˜×÷\YÅ~ʼnA¢99ÍØÕ¤aŽ‰¹_~½ ݨ€SføP»×Qú‰
+ ÎFÜà!!A ¨r;®XD»íH4àó¶‰c&æ¦a"Ýj"W#h@¥t~¹`“aLrÏ
+†@}Y–[ÐlKÏ’¬â.Âj‡“›Øc(Ö:•‰±î⢡óÅm[²í¼¾ÃcÖð
+#-£Q3_E7Š…`¡+¤w<M(	‚¥JÊΧææiˆcpbÍW›ØSàyŠvÇÈY÷Fš£q„‘º'"u4PDJœ©µ}9—•‚€&Ü^*†/
+C¡¦©í§è7Ÿut‰­ášLò—¸¹BÈ**©0rOY%ŒÒ 8adÅÞÂàF\Ïi¿I+é[¤8Ãö"–œ3%2aŸµ…>ÇñZû
+Gî^ZêC7niGI§óî-R²Â¥
+°l§¿§î~ú…Rz(TÙ½š¨¡5öKÂCrtõ”û˜ÍüëÊ„{_Eî>}…(ýþ¿cD_·‡‘Ë>Jý7Õß™â3I†Ê׋•²À‰ddƒ‚¡L‚M‚KB•Ÿ„Ý1ª¤‰ö¢t0Еpæ)§¢£dâSo×öÀ¾:¸O¯²žôqZèÍÓž&–衧áUɏX—{F ?ŸýÉpÞÎð¦.ÄVí;~t~uæ
+
 endstream
 endobj
 143 0 obj <<
@@ -1667,21 +1673,20 @@
 /ProcSet [ /PDF /Text ]
 >> endobj
 156 0 obj <<
-/Length 1313      
+/Length 1315      
 /Filter /FlateDecode
 >>
 stream
-xڍWKoã6¾çWÁd4fø(1@tÛ¦ÝöÔ…o»{PlÅ1b[®oÚýõ%ÊI6Ah8C‡ß<£3iUúl¿DŠé¿Ÿé×ø}EŽk <Ò ?;»¼!«T¨´Éf·™qNU¾Î|Y)ëÊl¶È>å?M¦¥3ùrbòýîü=¬¾µ“/³?_5 È©-”ž5}2pú«3èr25ÚÛ<"LêÈ©p›†m6ŠÂèÎËë:*xëÉðB…¢€Û´2¥Ø=»ƒÚÉÔ™*ŸwXì&S[åÝùÛ‰­ó|
-ïhöÃn"ý¨9n]ÁïW<×®ú7£ ½	åwÝï –ÏGXl6tƒB1l¢ÚC$æbÏg]ꨙì¹@~ÈßøD±È¦ñÙƨŸ}›»ýdZè2_ ÆÏÚ8|ÂÿÀ³Ñdð”ÒçÍúȯ¥Ý-*¾¼6&7ÔÊÕ% NúïyGŠ~Pea£\? D݃lNw[§
-WÇí‘
-ú>Qo½‚0Hôc…uŒ~ËÆæxm;…í‚%äìãß~.õ)A ï¥
-s<vŒvà‚H³ƒŸzH‘ÂWc웪è(jæ«è_²â \‡Dõ:DÒ°rñůÁ£U]?«ÓàÄ‹—ø°î¸c{6=(çôr<±Ú	o±×VÙÚG–¢h÷ÔXS*ïÍÈX²…a¢wè`nÔé]Yå!F èoÄ6„×Í-
-U[“ÂÛ«x#¼
-áµùCjbü­(Á ‡[6äqB¨}/²yÌ{× ÝP…Á·6kæ$¯?°Gö#æÍ6ÒÀ¿ãà‡`¿gî]r£Ó:ž6ùš~	T_ªJ;ÁT*µxêU¡m~×àA®}Èq1¸¦‡ x×#-ï_°ŠÔ ꆬuùNNHÖ ÂÅQx-àìË"ÿ9&ôÁA
-˽ą$ªë8Ñó9Åᯖ³{….X>zS;2èåîãኛÒö¤½Nå,~Á;£öJ	~CÕãwG·#õ/•ðÒ\œ¶áå~'¢·5c[*ÀÏÖ¨º¬ùrÈ>S—[úÚÜɺo)|/EÏ«`C6­”'œìÔIï¸aø¢*ÍJ+2óâ™å!U"–¸ds?K¤§í÷,%Å37žXÂcÉ°áésÊTuò<2_FŸaÏóÆødAô=GÁðB`fÓºLÐŒãuO#Q}Åž³>¶hú—7ë¸L‚th;¤Týßq¬ŽEó5«5ib֏üÁhnh¢8§t½=Žš+ =ç‚€UCUlýXÊ’kÉ£B»›öV¼ ¡NÚJ8ï¨P_ˆK¯¼¤Ó“”úmvf9ÓOÈ0e*cêl¾9ûPöÊ”¤Û@“0žÆ凍Ë~íÎþ†Ÿ(šF­ÓD-Mç£Â¯.œ2Þñ«?ru§¡Æz¯;*Ð4ì.x}à*‹d3*¨x´
-d".sq‚-ó.Vt^ŁôkùJZJËêQ;ùù¸Ù
-Å:ŒžÞº‹Ób½¥qdÏ\ܝ–èSƒMìûl$©é®òc«©sû´sÃõÒØP˼Ù2AÍC˜qŽ‚yŽÖ="Kê(¢·lâС´w"s‹Oköý?:ÀZ¹}çTC}KãŸx4e‘Ì÷lLþ…t@熌tú_‹s<
-Ûð‚Js 3>(ˆl(")ÕižüßPÅ
+xڍWKo7¾ûW,ŒV¨Eó±ä.
+´@Ó6iÚSÝ’ÖÒZ,iUÉŠÓüú΋û°ìØ0ìɏÏó²Î–™ÎÞŸéôU>€ ³=Œ“üñýÙÛÙÙ廳RÅR›lv“çTª,øRYç³Ù"û”ÿ2™zgòåÄäûÝø{X}o&_fõ "ãI†@œÚB…铁Ý_&S£ƒÍcE‚ÉcÉ
+³6ÍFTjPú´,ŽÎ¼|WeQÅ`^¨XpšVƋݳ[Àk&SgÊ|Þn`°›Lm™·[Ôo'¶Êïñ6¼¢Þ÷«I<tæ¸t¿_q_³é?^ŒÓpþ¶=ð 
+ùáƒÍ†NM8ë{HÂ\ìù¬½NÈdÏêcþöÃo0e‹lš®mŒŠéÚ7°¸ÝO¦…öù?kãð
+{ü×F“a¶€«ø×ë#ß–6´7|ùΘ¹±R®òÀ:áßñŠ!ûQù¦y1ü€µ÷²x¸Ú:U¸*-ÿ›ž@Ø ï	¼
+Êè!>ºÐQXÇì7l<qŽÇ6sl<C}ÜàݯáIRJÀ}iÁ·“D¸0Ro£g¦B¤å˜ûú€-yÍ|•Þ—¬ ?€§C¡|™¢aXºtã—èѪªž¢ÇUCçă—x±ö¸c{6è)ìçtsܱÚ	¯±×VÙ*$–´;5Öx‚K¶0Í tÚ›› ¼K«¸Âˆôý]œØÆø²¹E¡*k†ôv¯¤W!½6ÿ³Mô¿ÄpÆ<LˆU’ïd®EÝëîåiP®)Ãà]ë5k·?ð‹:F˜èæõ6É ¿eçg¿cííàD§uÚmò5ý©Á«R;áT2µ¼å«BÛü¶ÆœûPãRqN!
+Qq/OT4¼~Á׈ p}Ôº|';$jpq]<_俦€>"9ˆ°Ü‹_H º.“<Ÿ“?º`9ºWøË'\B}jG=ïÁ?\qQz¦Â>*¯SÙ‹_xQy¥ ¿¦ì…þ»£ÓQúF)Ü›‹Çex¹ßÉÔ늱õÊExgkTå+>¢Ïøè¨ìúhs'ãB¾^ôA’^PÑÆlZ*T°Á–RvéÑ×vc×éM3ŽÐ`ŸÙ£øQtæ)±Ç=±?°IڐSâtqסègO/åSãñ­Gã§o~ÀLÏ5Hé´‘?<ã›Ù´‚†=ÔãtÖ©3ª¯XvÖdž}Mßãðz†?í+ù)€7ì®ã©y‹ÈjMH¬ú™?èÐ5µBç±7çýVsràp¦*¥’­ÿ	s’÷œNÚ]_s™¨©˜6R"Î[ÊUçÒl^‰¨“¨úcvfˆ9Ó5ÉÐh*cªl¾9ûX2•D\/ÓdÚ)ŠË—ýÞžý?ijšP§XjÐG¹']8e‚ã[äO}#t2t%î`w”£©ß]p+zωÅz”Sqk×HSìsyëó6%uöŠ=é¦ó•T•†áÞù¸Ùö€bzOgÝ‚§¦¥:zCÉž“¸<÷0K?6ؤÒÏF4xe[MÅ;‹7ÿ µ
+Qæõ–ª¢L­´t4îYRQa͸j“†6
+Ë'*·xµzßý¡=X#§ïR«j¨©o¨CàO¦,->Í!Eй¾£<üÇÅ9îIÇ•xAL
+c 3!*ðlHz"Iåã8ùsGì
 endstream
 endobj
 155 0 obj <<
@@ -1883,42 +1888,42 @@
 /sRGB CS 0.000 0.000 0.000 SCN
 7.20 45.18 337.60 303.84 re S
 /sRGB cs 0.000 0.000 0.000 scn
-47.94 309.58 2.92 2.92 re f
-48.56 264.62 1.69 1.69 re f
+41.09 302.73 16.62 16.62 re f
+49.40 265.46 0.00 0.00 re f
 49.40 219.89 0.00 0.00 re f
 49.40 174.31 0.00 0.00 re f
-48.21 127.54 2.39 2.39 re f
-41.00 74.76 16.80 16.80 re f
+48.56 127.89 1.69 1.69 re f
+49.40 83.16 0.00 0.00 re f
 100.04 311.04 0.00 0.00 re f
 100.04 265.46 0.00 0.00 re f
-91.68 211.53 16.71 16.71 re f
+98.85 218.69 2.39 2.39 re f
 100.04 174.31 0.00 0.00 re f
-100.04 128.74 0.00 0.00 re f
-99.20 82.32 1.69 1.69 re f
-142.37 302.73 16.62 16.62 re f
+91.81 120.51 16.45 16.45 re f
+100.04 83.16 0.00 0.00 re f
+150.68 311.04 0.00 0.00 re f
 150.68 265.46 0.00 0.00 re f
 150.68 219.89 0.00 0.00 re f
-150.68 174.31 0.00 0.00 re f
-149.84 127.89 1.69 1.69 re f
+142.24 165.87 16.88 16.88 re f
+149.49 127.54 2.39 2.39 re f
 150.68 83.16 0.00 0.00 re f
 201.32 311.04 0.00 0.00 re f
-201.32 265.46 0.00 0.00 re f
-200.13 218.69 2.39 2.39 re f
+192.92 257.07 16.80 16.80 re f
+201.32 219.89 0.00 0.00 re f
 201.32 174.31 0.00 0.00 re f
-193.09 120.51 16.45 16.45 re f
+201.32 128.74 0.00 0.00 re f
 201.32 83.16 0.00 0.00 re f
-251.96 311.04 0.00 0.00 re f
-251.96 265.46 0.00 0.00 re f
+250.50 309.58 2.92 2.92 re f
+251.12 264.62 1.69 1.69 re f
 251.96 219.89 0.00 0.00 re f
-243.52 165.87 16.88 16.88 re f
+251.96 174.31 0.00 0.00 re f
 250.77 127.54 2.39 2.39 re f
-251.96 83.16 0.00 0.00 re f
+243.56 74.76 16.80 16.80 re f
 302.60 311.04 0.00 0.00 re f
-294.20 257.07 16.80 16.80 re f
[TRUNCATED]

To get the complete diff run:
    svnlook diff /svnroot/adegenet -r 923


More information about the adegenet-commits mailing list