[adegenet-commits] r546 - pkg/man
noreply at r-forge.r-project.org
noreply at r-forge.r-project.org
Mon Feb 1 20:09:17 CET 2010
Author: jombart
Date: 2010-02-01 20:09:17 +0100 (Mon, 01 Feb 2010)
New Revision: 546
Modified:
pkg/man/dapc.Rd
Log:
?
Modified: pkg/man/dapc.Rd
===================================================================
--- pkg/man/dapc.Rd 2010-02-01 16:09:55 UTC (rev 545)
+++ pkg/man/dapc.Rd 2010-02-01 19:09:17 UTC (rev 546)
@@ -9,43 +9,40 @@
\alias{scatter.dapc}
\alias{assignplot}
\title{Discriminant Analysis of Principal Components (DAPC)}
-\description{These functions implement the Discriminant Analysis of
- Principal Components (DAPC). See 'details' section for a succint
- description of the method. \cr
+\description{
+ These functions implement the Discriminant Analysis of Principal Components
+ (DAPC). See 'details' section for a succint description of the method. DAPC
+ implementation calls upon \code{dudi.pca} from the \code{ade4} package and
+ \code{lda} from the \code{MASS} package.
- DAPC implementation calls upon \code{dudi.pca} from the \code{ade4} package and
- \code{lda} from the \code{MASS} package.\cr
+ \code{dapc} performs the DAPC on a \code{data.frame}, a \code{matrix}, or a
+ \code{\linkS4class{genind}} object, and returns an object with class
+ \code{dapc}. If data are stored in a \code{data.frame} or a \code{matrix},
+ these have to be quantitative data (i.e., \code{numeric} or \code{integers}),
+ as opposed to \code{characters} or \code{factors}.
- \code{dapc} performs the DAPC on a \code{data.frame}, a \code{matrix},
- or a \code{\linkS4class{genind}} object, and returns an object with
- class \code{dapc}. Of data are stored in a \code{data.frame} or a
- \code{matrix}, these have to be quantitative data (i.e., \code{numeric} or
- \code{integers}), as opposed to \code{characters} or \code{factors}. \cr
-
- Other functions are:\cr
+
+ Other functions are:
- - \code{print.dapc}: prints the content of a \code{dapc} object\cr
+ - \code{print.dapc}: prints the content of a \code{dapc} object
- - \code{summary.dapc}: gives variance and autocorrelation\cr
- statistics
+ - \code{summary.dapc}: gives variance and autocorrelation statistics
- - \code{scatter.dapc}: produces scatterplots of principal components
- (or 'discriminant functions'), with a screeplot of eigenvalues as inset.\cr
+ - \code{scatter.dapc}: produces scatterplots of principal components (or
+ 'discriminant functions'), with a screeplot of eigenvalues as inset.
- \code{assignplot}: plot showing the probabilities of assignment of
- individuals to the different clusters.\cr
+ individuals to the different clusters.
}
\usage{
\method{dapc}{data.frame}(x, grp, n.pca=NULL, n.da=NULL, center=TRUE,
- scale=FALSE, var.contrib=FALSE,
- pca.select=c("nbEig","percVar"), perc.pca=NULL)
+scale=FALSE, var.contrib=FALSE, pca.select=c("nbEig","percVar"), perc.pca=NULL)
\method{dapc}{matrix}(x, \ldots)
\method{dapc}{genind}(x, pop=NULL, n.pca=NULL, n.da=NULL, scale=FALSE,
- scale.method=c("sigma", "binom"), truenames=TRUE,
- all.contrib=FALSE, pca.select=c("nbEig","percVar"),
- perc.pca=NULL)
+scale.method=c("sigma", "binom"), truenames=TRUE, all.contrib=FALSE,
+pca.select=c("nbEig","percVar"), perc.pca=NULL)
\method{print}{dapc}(x, \dots)
@@ -117,7 +114,6 @@
The Discriminant Analysis of Principal Components (DAPC) is designed to
investigatey. \cr
- \cr
}
\value{
=== dapc objects ===\cr
@@ -141,7 +137,7 @@
all individuals and all clusters.}
\item{var.contr}{(optional) a data.frame giving the contributions of original
variables (alleles in the case of genetic data) to the principal components
- of DAPC.}\cr
+ of DAPC.}
=== other outputs ===\cr
Other functions have different outputs:\cr
@@ -150,7 +146,7 @@
\code{assign.prop} (proportion of overall correct assignment),
\code{assign.per.pop} (proportion of correct assignment per group),
\code{prior.grp.size} (prior group sizes), and \code{post.grp.size} (posterior
- group sizes).\cr
+ group sizes).
- \code{scatter.dapc, assignplot} return the matched call.\cr
}
@@ -159,11 +155,10 @@
Discriminant analysis of principal components: a new method for the analysis of
genetically structured populations. Submitted to \emph{PLoS genetics}.
}
-\seealso{\code{\link{find.clusters}}, to identify clusters with prior in
- the data. \code{\link{dapcIllus}}, a set of simulated data illustrating
- the DAPC, and \code{\link{eHGDP}} and \code{\link{H3N2}}, empirical
- datasets also illustrating DAPC.
-}
+\seealso{\code{\link{find.clusters}}, to identify clusters without
+ prior. \code{\link{dapcIllus}}, a set of simulated data illustrating the DAPC,
+ and \code{\link{eHGDP}} and \code{\link{H3N2}}, empirical datasets also
+ illustrating DAPC. }
\author{ Thibaut Jombart \email{t.jombart at imperial.ac.uk} }
\examples{
## data(dapcIllus), data(eHGDP), and data(H3N2) illustrate the dapc
More information about the adegenet-commits
mailing list