<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<div class="moz-forward-container">
<meta content="text/html; charset=ISO-8859-1"
http-equiv="Content-Type">
Hi Philippe,<br>
<div class="moz-cite-prefix"> <br>
your result suggests that behaviour change is very quick
compared to network change, i.e., that according to the given
model specification (a very sparse one), the first behaviour
measure is actually non-informative for explaining the evolution
to the second behaviour measure.<br>
<br>
This could be due to several things: actor heterogeneity when
the model assumes homogeneity, some other type of model
misspecification, use of an inflated behaviour scale (your
parameters are very small, suggesting as much), or true
independence in your behaviour responses. I'd suggest you check
the micro step distribution first (who makes how many steps in
which direction) for any anomalies.<br>
<br>
Best,<br>
Ch<br>
<br>
<br>
<br>
Am 14/07/2012 18:06, schrieb Philippe Sulger:<br>
</div>
<blockquote
cite="mid:BLU0-SMTP308DCC97BA9FDF7CEE5E298C4D60@phx.gbl"
type="cite">
<meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
<font face="Courier New, Courier, monospace">Dear RSiena-Users<br>
<br>
</font><font face="Courier New, Courier, monospace">I jointly
analyze network dynamics and behavioral dynamics. Something
that I am concerned about are the large standard errors on the
estimate of the behavioral rate parameter. Here an example:<br>
<br>
Estimate
Standard Convergence <br>
Error t-ratio <br>
Network Dynamics <br>
1. rate basic rate parameter friends 7.8441 (
1.3870 ) 0.0131 <br>
2. eval outdegree (density) -1.1287 (
0.1991 ) -0.0392 <br>
3. eval reciprocity 1.8075 (
1.1237 ) 0.0220 <br>
4. endow reciprocity -1.7207 (
1.9371 ) -0.0050 <br>
5. eval balance 0.2603 (
0.0565 ) 0.0264 <br>
6. eval same covariate 0.2877 (
0.2220 ) 0.0135 <br>
<br>
Behavior Dynamics<br>
7. rate rate behav period 1 34.9277 (
36.6589 ) -0.0177 <br>
8. eval behavior behav linear shape -0.0327 (
0.0592 ) -0.0194 <br>
9. eval behavior behav quadratic shape 0.0003 (
0.0048 ) -0.0220 <br>
10. eval behavior behav: effect from covariate -0.0096 (
0.1383 ) -0.0588 <br>
<br>
As you see, convergence is good. Even if I exclude the 10th
effect (effect from gender, in many networks I get large s.e.
for the rate on aggressive behavior). I also made the rate of
behav dependent on covariates with no essential effect.<br>
<br>
Are these large s.e.'s of concern?<br>
<br>
Thanks for your help.<br>
<br>
Best,<br>
Philippe<br>
</font> <br>
<fieldset class="mimeAttachmentHeader"></fieldset>
<br>
<pre wrap="">_______________________________________________
Rsiena-help mailing list
<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:Rsiena-help@lists.r-forge.r-project.org">Rsiena-help@lists.r-forge.r-project.org</a>
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rsiena-help">https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rsiena-help</a></pre>
</blockquote>
<br>
<br>
<pre class="moz-signature" cols="72">--
_ __ ___ ____ ___ __ _ __ ___ ____ ___ __ _
Christian Steglich, researcher
Faculty of Behavioural and Social Sciences
University of Groningen
Grote Rozenstraat 31
9712 TG Groningen
The Netherlands
fon +31-(0)50-363 6189
fax +31-(0)50-363 6304
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://www.gmw.rug.nl/%7Esteglich/">http://www.gmw.rug.nl/~steglich/</a>
_ __ ___ ____ ___ __ _ __ ___ ____ ___ __ _
</pre>
<br>
<br>
</div>
<br>
</body>
</html>