<html><head></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; color: rgb(0, 0, 0); font-size: 14px; font-family: Cambria, sans-serif; "><div><div>Dirk,</div><div><br></div><div>Piggybacking off of Jonathan's suggestion, attached are the slides and code for a talk on Bayesian Data Analysis at the Denver R User's Group (DRUG) in April. In the talk, I used the inline package and Rcpp to speed up MCMC sampling. </div><div><br></div><div>I use the famous coal mining accidents data set and try to determine the year in which safety standards changed the typical number of coal mining accidents. The relevant files are drug_first.R (a naïve implementation in R), drug_vec.R (a vectorized R version that speeds things up quite a bit, and drug_rcpp.R (the inline Rcpp version). The advantage of this example is that it uses real data, and you could probably do a couple of cool plots using ggplot2 to backup the other speaker. The Rcpp version could be improved with the recent enhancements to Rcpp.</div><div><br></div><div>Joshua</div><div><div style="font-family: Calibri, sans-serif; ">-- </div><div><div><font face="Cambria">Joshua French, Ph.D.</font></div><div><span style="font-family: Cambria; ">Assistant Professor</span></div><div><span style="font-family: Cambria; ">Department of Mathematical and Statistical Sciences</span></div><div><font face="Cambria">University of Colorado Denver</font></div><div><font face="Cambria"><a href="mailto:Joshua.French@ucdenver.edu">Joshua.French@ucdenver.edu</a></font></div><div><font face="Cambria"><a href="http://math.ucdenver.edu/~jfrench/">http://math.ucdenver.edu/~jfrench/</a></font></div><div><span style="font-family: Cambria; ">Ph: 303-556-6253 Fax: 303-556-8550</span></div></div></div></div></body></html>