
CONTRIBUTED ARTICLE 1

Rcpp: Seamless R and C++ integration
by Dirk Eddelbuettel and Romain François

Abstract The Rcpp package simplifies integrat-
ing C++ code with R. It provides a consistent
C++ class hierarchy that maps various types of
R objects (vectors, functions, environments, ...)
to dedicated C++ classes. Object interchange be-
tween R and C++ is managed by simple, flexi-
ble and extensible concepts which include broad
support for C++ STL idioms. C++ code can be
compiled, linked and loaded on the fly. Flexible
error and exception code handling is provided.
Rcpp substantially lowers the barrier for pro-
grammers wanting to combine C++ code with R.

Introduction

R is an extensible system. The ‘Writing R Extensions’
manual (R Development Core Team, 2009a) describes
in detail how to augment R with compiled code, fo-
cussing mostly on the C language. The R API de-
scribed in ‘Writing R Extensions’ is based on a set of
functions and macros operating on SEXP, the internal
representation of R objects. In this article, we discuss
the functionality of the Rcpp package, which simpli-
fies the usage of C++ code in R. Combining R and
C++ is not a new idea, so we start with a short re-
view of other approaches and give some historical
background on the development of Rcpp.

The current version of Rcpp combines two dis-
tinct APIs. The first—which we call ‘classic Rcpp
API’—exists since the first version of Rcpp. The sec-
ond API, enclosed in the Rcpp C++ namespace, is a
newer codebase which we started to develop more
recently. This article highlights some of the key de-
sign and implementation choices: lightweight en-
capsulation of R objects in C++ classes, automatic
garbage collection strategy, code inlining, data inter-
change between R and C++ and error handling.

Several examples are included to illustrate the
benefits of using Rcpp as opposed to the traditional
R API. Many more examples are available within the
package, both as explicit examples and as part of the
numerous unit tests.

Historical Context

Rcpp first appeared in 2005 as a contribution to
the RQuantLib package (Eddelbuettel and Nguyen,
2009) before becoming a CRAN package in early
2006. Several releases followed in quick succession;
all of these were under the name Rcpp. The pack-
age was then renamed to RcppTemplate and several
more releases followed during 2006 under the new
name. However, no new releases or updates were
made during 2007, 2008 and most of 2009.

Given the continued use of the package, it was re-
vitalized. New releases, using the initial name Rcpp,
started in November 2008. These already included
an improved build and distribution process, addi-
tional documentation, and new functionality—while
retaining the existing interface. This constitutes the
‘classic Rcpp’ interface (described in the next section)
which will be maintained for the foreseeable future.

Yet C++ coding standards continued to evolve
(Meyers, 2005). So starting in 2009 the codebase was
significantly extended and numerous new features
were added. Several of these are described below in
the section on the ‘new Rcpp’ interface. This new
API is our current focus, and we intend to both ex-
tend and support it going forward.

Comparison

Integration of C++ and R has been addressed by
several authors; the earliest published reference is
probably Bates and DebRoy (2001). An unpublished
paper by Java et al. (2007) expresses several ideas
that are close to some of our approaches, though
not yet fully fleshed out. The Rserve package (Ur-
banek, 2009) was another early approach, going back
to 2002. On the server side, Rserve translates R data
structures into a binary serialization format and uses
TCP/IP for transfer. On the client side, objects are
reconstructed as instances of Java or C++ classes that
emulate the structure of R objects.

The packages rcppbind (Liang, 2008), RAbstrac-
tion (Armstrong, 2009a) and RObjects (Armstrong,
2009b) are all implemented using C++ templates.
However, neither has matured to the point of a
CRAN release and it is unclear how much usage
these packages are seeing beyond their own authors.
CXXR (Runnalls, 2009) comes to this topic from the
other side: its aim is to completely refactor R on a
stronger C++ foundation. CXXR is therefore con-
cerned with all aspects of the R interpreter, REPL
loop, threading—and object interchange between R
and C++ is but one part. A similar approach is dis-
cussed by Temple Lang (2009a) who suggests mak-
ing low-level internals extensible by package de-
velopers in order to facilitate extending R. Another
slightly different angle is offered by Temple Lang
(2009b) who uses compiler output for references on
the code in order to add bindings and wrappers.
Lastly, the RcppTemplate package (Samperi, 2009)
recently introduced a few new ideas yet decided to
break with the ‘classic Rcpp’ API.

A critical comparison of these packages that ad-
dresses relevant aspects such API features, perfor-
mance, usability and documentation would be a wel-
come addition to the literature, but is beyond the
scope of this article.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 2

Classic Rcpp API

The core focus of Rcpp—particularly for the earlier
API described in this section—has always been on al-
lowing the programmer to add C++-based functions.
We use this term in the standard mathematical sense
of providing results (output) given a set of parame-
ters or data (input). This was facilitated from the ear-
liest releases using C++ classes for receiving various
types of R objects, converting them to C++ objects
and allowing the programmer to return the results to
R with relative use.

This API therefore supports two typical use cases.
First, one can think of replacing existing R code with
equivalent C++ code in order to reap performance
gains. This case is conceptually easy as there may
not be (built- or run-time) dependencies on other C
or C++ libraries. It typically involves setting up data
and parameters—the right-hand side components of
a function call—before making the call in order to
provide the result that is to be assigned to the left-
hand side. Second, Rcpp facilitates calling functions
provided by other libraries. The use resembles the
first case: data and parameters are passed via Rcpp
to a function set-up to call code from an external li-
brary.

An illustration can be provided using the time-
tested example of a convolution of two vectors. This
example is shown in sections 5.2 (for the .C() inter-
face) and 5.9 (for the .Call() interface) of ’Writing
R Extensions’ (R Development Core Team, 2009a).
We have rewritten it here using classes of the classic
Rcpp API:

#include <Rcpp.h>

RcppExport SEXP convolve2cpp(SEXP a,SEXP b) {
RcppVector<double> xa(a);
RcppVector<double> xb(b);
int nab = xa.size() + xb.size() - 1;

RcppVector<double> xab(nab);
for (int i = 0; i < nab; i++) xab(i) = 0.0;

for (int i = 0; i < xa.size(); i++)
for (int j = 0; j < xb.size(); j++)

xab(i + j) += xa(i) * xb(j);

RcppResultSet rs;
rs.add("ab", xab);
return rs.getReturnList();

}

We can highlight several aspects. First, only a
single header file Rcpp.h is needed to use the Rcpp
API. Second, given two SEXP types, a third is re-
turned. Third, both inputs are converted to tem-
plated1 C++ vector types, here a standard double

type is used to create a vector of doubles from the
template type. Fourth, the usefulness of these classes
can be seen when we query the vectors directly for
their size—using the size() member function—in
order to reserve a new result type of appropriate
length whereas use based on C arrays would have
required additional parameters for the length of vec-
tors a and b, leaving open the possibility of mis-
matches between the actual length and the length re-
ported by the programmer. Fifth, the computation
itself is straightforward embedded looping just as in
the original examples in the ’Writing R Extensions’
manual (R Development Core Team, 2009a). Sixth, a
return type (RcppResultSet) is prepared as a named
object which is then converted to a list object that is
returned. We should note that the RcppResultSet
supports the return of numerous (named) objects
which can also be of different types.

We argue that this usage is already much easier
to read, write and debug than the C macro-based ap-
proach supported by R itself. Possible performance
issues and other potential limitations will be dis-
cussed throughout the article and reviewed at the
end.

New Rcpp API

More recently, the Rcpp API has been dramatically
extended, leading to a complete redesign, based on
the usage experience of several years of Rcpp de-
ployment, needs from other projects, knowledge of
the internal R API, as well as current C++ design ap-
proaches. This redesign of Rcpp was also motivated
by the needs of other projects such as RInside (Ed-
delbuettel and François, 2010) for easy embedding of
R in a C++ applications and RProtoBuf (François and
Eddelbuettel, 2010) that interfaces with the protocol
buffers library.

Rcpp Class hierarchy

The Rcpp::RObject class is the basic class of the new
Rcpp API. An instance of the RObject class encap-
sulates an R object (SEXP), exposes methods that are
appropriate for all types of objects and transparently
manages garbage collection.

The most important aspect of the RObject class
is that it is a very thin wrapper around the SEXP it
encapsulates. The SEXP is indeed the only data mem-
ber of an RObject. The RObject class does not inter-
fere with the way R manages its memory, does not
perform copies of the object into a suboptimal C++
representation, but instead merely acts as a proxy to
the object it encapsulates so that methods applied to
the RObject instance are relayed back to the SEXP in
terms of the standard R API.

1C++ templates allow functions or classes to be written somewhat independently from the template parameter. The actual class is
instantiated by the compiler by replacing occurences of the templated parameter(s).

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 3

The RObject class takes advantage of the explicit
life cycle of C++ objects to manage exposure of the
underlying R object to the garbage collector. The
RObject effectively treats its underlying SEXP as a re-
source. The constructor of the RObject class takes the
necessary measures to guarantee that the underlying
SEXP is protected from the garbage collector, and the
destructor assumes the responsibility to withdraw
that protection.

By assuming the entire responsibility of garbage
collection, Rcpp relieves the programmer from writ-
ing boiler plate code to manage the protection stack
with PROTECT and UNPROTECT macros.

The RObject class defines a set of member func-
tions applicable to any R object, regardless of its
type. This ranges from querying properties of the
object (isNULL, isObject, isS4), management of the
attributes (attributeNames, hasAttribute, attr) and
handling of slots2 (hasSlot, slot).

Derived classes

Internally, an R object must have one type amongst
the set of predefined types, commonly referred to as
SEXP types. R internals (R Development Core Team,
2009b) documents these various types. Rcpp asso-
ciates a dedicated C++ class for most SEXP types,
therefore only exposes functionality that is relevant
to the R object that it encapsulates.

For example Rcpp::Environment contains mem-
ber functions to manage objects in the associ-
ated environment. Similarly, classes related to
vectors (IntegerVector, NumericVector, RawVector,
LogicalVector, CharacterVector, GenericVector
and ExpressionVector) expose functionality to ex-
tract and set values from the vectors.

The following sub-sections present typical uses of
Rcpp classes in comparison with the same code ex-
pressed using functions of the R API.

Numeric vectors

The following code snippet is taken from Writing R
extensions (R Development Core Team, 2009a). It
creates a numeric vector of two elements and assigns
some values to it.

SEXP ab;
PROTECT(ab = allocVector(REALSXP, 2));
REAL(ab)[0] = 123.45;
REAL(ab)[1] = 67.89;
UNPROTECT(1);

Although this is one of the simplest examples in
Writing R extensions, it seems verbose and it is not
obvious at first sight to understand what is happen-
ing. Memory is allocated by allocVector; we must

also supply it with the type of data (REALSXP) and the
number of elements. Once allocated, the ab object
must be protected from garbage collection3. Lastly,
the REAL macro returns a pointer to the beginning of
the actual array; its indexing does not resemble either
R or C++.

Using the Rcpp::NumericVector class, the code
can be rewritten:

Rcpp::NumericVector ab(2) ;
ab[0] = 123.45;
ab[1] = 67.89;

The code contains fewer idiomatic decorations.
The NumericVector constructor is given the number
of elements the vector contains (2), this hides a call
to the allocVector we saw previously. Also hidden
is protection of the object from garbage collection,
which is a behavior that NumericVector inherits from
RObject. Values are assigned to the first and second
elements of the vector as NumericVector overloads
the operator[].

With the most recent compilers (e.g. GNU g++
>= 4.4) which already implement parts of the next
C++ standard (C++0x) currently being drafted, the
preceding code may even be reduced to this:

Rcpp::NumericVector ab = {123.45, 67.89};

Character vectors

A second example deals with character vectors and
emulates this R code

> c("foo", "bar")

Using the traditional R API, the vector can be al-
located and filled as such:

SEXP ab;
PROTECT(ab = allocVector(STRSXP, 2));
SET_STRING_ELT(ab, 0, mkChar("foo"));
SET_STRING_ELT(ab, 1, mkChar("bar"));
UNPROTECT(1);

This imposes on the programmer knowl-
edge of PROTECT, UNPROTECT, SEXP, allocVector,
SET_STRING_ELT, mkChar.

Using the Rcpp::CharacterVector class, we can
express the same code more concisely:

CharacterVector ab(2) ;
ab[0] = "foo" ;
ab[1] = "bar" ;

R and C++ data interchange

In addition to classes, the Rcpp package contains two
functions to perform conversion of C++ objects to R
objects and back.

2The member functions that deal with slots are only applicable on S4 objects; otherwise an exception is thrown.
3Since the garbage collection can be triggered at any time, not protecting an object means its memory might be reclaimed too soon.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 4

C++ to R : wrap

The C++ to R conversion is performed by the
Rcpp::wrap templated function. It uses advanced
template meta programming techniques4 to convert
a wide and extensible set of types and classes to the
most appropriate type of R object. The signature of
the wrap template is:

template <typename T>
SEXP wrap(const T& object) ;

The templated function takes a reference to a
‘wrappable‘ object and converts this object into a
SEXP, which is what R expects. Currently wrappable
types are :

• primitive types, int, double, ... which are con-
verted into the corresponding atomic R vectors;

• std::string which are converted to R atomic
character vectors;

• STL containers such as std::vector<T> or
std::list<T>, as long as the template param-
eter type T is itself wrappable;

• STL maps which use std::string for keys (e.g.
std::map<std::string,T>); as long as the type
T is wrappable;

• any type that implements implicit conversion
to SEXP through the operator SEXP();

• any type for which the wrap template is par-
tially or fully specialized.

One example for the specialisation of the templated
wrap function is provided in RInside (Eddelbuettel
and François, 2010) by vector< vector< double >
> and vector< vector< int > > which are used for
representing numeric matrices.

Wrappability of an object type is resolved at com-
pile time using modern techniques of template meta
programming and class traits.

The following code snippet illustrates that the de-
sign allows composition:

std::vector< std::map<std::string,int> > v;
std::map< std::string, int > m1;
std::map< std::string, int > m2;

m1["foo"] = 1; m1["bar"] = 2;
m2["foo"] = 1; m2["bar"] = 2; m2["baz"] = 3;

v.push_back(m1) ;
v.push_back(m2) ;
Rcpp::wrap(v) ;

The code creates a list of two named vectors,
equal to the result of this R statement:

list(c(bar = 2L, foo = 1L) ,
c(bar = 2L, baz = 3L, foo = 1L))

R to C++ : as

The reversed conversion is implemented by varia-
tions of the Rcpp::as template. It offers less flex-
ibility and currently handles conversion of R ob-
jects into primitive types (bool, int, std::string, ...),
STL vectors of primitive types (std::vector<bool>,
std::vector<double>, etc ...) and arbitrary types
that offer a constructor that takes a SEXP. In addi-
tion as can be fully or partially specialized to manage
conversion of R data structures to third-party types.

Implicit use of converters

The converters offered by wrap and as provide a very
useful framework to implement the logic of the code
in terms of C++ data structures and then explicitly
convert data back to R.

In addition, the converters are also used implic-
itly in various places in the Rcpp API. Consider
the following code that uses the Rcpp::Environment
class to interchange data between C++ and R.

assuming the global environment contains
a variable 'x' that is a numeric vector
Rcpp::Environment global =

Rcpp::Environment::global_env()

extract a std::vector<double> from
the global environment
std::vector<double> vx = global["x"] ;

create a map<string,string>
std::map<std::string,std::string> map ;
map["foo"] = "oof" ;
map["bar"] = "rab" ;

push the STL map to R
global["y"] = map ;

In the first part of the example, the code extracts a
std::vector<double> from the global environment.
This is achieved by the templated operator[] of
Environment that first extracts the requested object
from the environment as a SEXP, and then outsources
to Rcpp::as the creation of the requested type.

In the second part of the example, the
operator[] delegates to wrap the production of
an R object based on the type that is passed in
(std::map<std::string,std::string>), and then
assigns the object to the requested name.

The same mechanism is used throughout the API.
Examples include access/modification of object at-
tributes, slots, elements of generic vectors (lists),
function arguments, nodes of dotted pair lists and
language calls and more.

4A discussion of template meta programming is beyond the scope of this article.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 5

Environment: Using the Rcpp API

Environment stats("package:stats");
Function rnorm = stats["rnorm"];
return rnorm(10, Named("sd", 100.0));

Environment: Using the R API

SEXP stats = PROTECT(
R_FindNamespace(mkString("stats")));

SEXP rnorm = PROTECT(
findVarInFrame(stats, install("rnorm")));

SEXP call = PROTECT(
LCONS(rnorm,
CONS(ScalarInteger(10),
CONS(ScalarReal(100.0),R_NilValue))));

SET_TAG(CDDR(call), install("sd"));
SEXP res = PROTECT(eval(call, R_GlobalEnv));
UNPROTECT(4) ;
return res ;

Language: Using the Rcpp API

Language call("rnorm",10,Named("sd",100.0));
return call.eval();

Language: Using the R API

SEXP call = PROTECT(
LCONS(install("rnorm"),
CONS(ScalarInteger(10),
CONS(ScalarReal(100.0),R_NilValue))));

SET_TAG(CDDR(call), install("sd")) ;
SEXP res = PROTECT(eval(call, R_GlobalEnv));
UNPROTECT(2) ;
return res ;

Table 1: Rcpp versus the R API: Four ways of calling rnorm(10L, sd=100) in C / C++. We have removed
the Rcpp:: prefix from the examples for readability; this corresponds to adding a statement using namespace
Rcpp; in the code

Function calls

The next example shows how to use Rcpp to emu-
late the R code rnorm(10L, sd=100.0). As shown in
table 1, the code can be expressed in several ways
in either Rcpp or the standard R API. The first ver-
sion shows the use of the Environment and Function
classes by Rcpp. The second version shows the use of
the Language class, which manage calls (LANGSXP).
For comparison, we also show both versions using
the standard R API.

This example illustrates that the Rcpp API per-
mits us to work with code that is easier to read, write
and maintain. More examples are available as part of
the documentation included in the Rcpp package, as
well as among its over one hundred and ninety unit
tests.

Using code ‘inline’

Extending R with compiled code also needs to ad-
dress how to reliably compile, link and load the code.
While using a package is preferable in the long run,
it may be too involved for for quick explorations. An
alternative is provided by the inline package (Sklyar

et al., 2009) which compiles, links and loads a C, C++
or Fortran function—directly from the R prompt us-
ing a simple function cfunction. It was recently ex-
tended to work with Rcpp by allowing for the use of
additional header files and libraries. This works par-
ticularly well with the Rcpp package where headers
and the library are automatically found if the appro-
priate option Rcpp to cfunction is set to TRUE.

The use of inline is possible as Rcpp can be in-
stalled and updated just like any other R package
using e.g. the install.packages() function for ini-
tial installation as well as update.packages() for up-
grades. So even though R / C++ interfacing would
otherwise require source code, the Rcpp library is al-
ways provided ready for use as a pre-built library
through the CRAN package mechanism.5

The library and header files provided by Rcpp
for use by other packages are installed along with
the Rcpp package making it possible for Rcpp to
provide the appropriate -I and -L switches needed
for compilation and linking. So internally, inline
makes uses of the two functions Rcpp:::CxxFlags()
and Rcpp:::LdFlags() that provide this information
(and which are also used by Makevars files of other
packages). Here, however, all this is done behind the
scenes without the need for explicitly setting com-

5This presumes a platform for which pre-built binaries are provided. Rcpp is available in binary form for Windows and OS X users
from CRAN, and as a .deb package for Debian and Ubuntu users. For other systems, the Rcpp library is automatically built from source
during installation or upgrades.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 6

piler or linker options.
The convolution example provided above can be

rewritten for use by inline as shown below. The
function body is provided by the character variable
src, the function header is defined by the argument
signature—and we only need to enable Rcpp=TRUE
to obtain a new function fun based on the C++ code
in src where we also switched from the classic Rcpp
API to the new one:

src <- '
Rcpp::NumericVector xa(a);
Rcpp::NumericVector xb(b);
int n_xa = xa.size(), n_xb = xb.size();

Rcpp::NumericVector xab(n_xa + n_xb - 1);
for (int i = 0; i < n_xa; i++)

for (int j = 0; j < n_xb; j++)
xab[i + j] += xa[i] * xb[j];

return xab;
'
fun <- cfunction(

signature(a="numeric", b="numeric"),
src, Rcpp=TRUE)

The main difference to the previous solution is
that the input parameters are directly passed to types
Rcpp::NumericVector, and that the return vector is
automatically converted to a SEXP type through im-
plicit conversion. Also in this version, the vector xab
is not initialized because the constructor already per-
forms initialization to match the behavior of the R
function numeric.

Using STL algorithms

The C++ Standard Template Library (STL) offers a
variety of generic algorithms designed to be used
on ranges of elements (Plauger et al., 2000). A
range is any sequence of objects that can be accessed
through iterators or pointers. All Rcpp classes from
the new API representing vectors (including lists)
can produce ranges through their member functions
begin() and end(), effectively supporting iterating
over elements of an R vector.

The following code illustrates how Rcpp might
be used to emulate a simpler6 version of lapply us-
ing the transform algorithm from the STL.

src <- '
Rcpp::List input(data);
Rcpp::Function f(fun) ;
Rcpp::List output(input.size());
std::transform(
input.begin(), input.end(),
output.begin(),
f) ;

output.names() = input.names() ;

return output ;
'

cpp_lapply <- cfunction(
signature(data="list", fun = "function"),
src, Rcpp = TRUE)

We can use this to calculate a summary of each
column of the faithful dataset included with R.

> cpp_lapply(faithful, summary)
$eruptions
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.600 2.163 4.000 3.488 4.454 5.100

$waiting
Min. 1st Qu. Median Mean 3rd Qu. Max.
43.0 58.0 76.0 70.9 82.0 96.0

Error handling

Code that uses both R and C++ has to deal with two
concurrent error handling models. Rcpp simplifies
this and allows both systems to work together.

C++ exceptions in R

The traditional way of dealing with C++ exceptions
in R is to catch them through explicit try/catch
blocks and convert this exception into an R error
manually.

In C++, when an application throws an excep-
tion that is not caught, a special function (called the
terminate handler) is invoked. This typically causes
the program to abort. Rcpp takes advantage of this
mechanism and installs its own terminate handler
which translates C++ exceptions into R conditions.
The following code gives an illustration.

> fun <- cfunction(signature(x = "integer"),'
+ int dx = as<int>(x) ;
+ if(dx > 10)
+ throw std::range_error("too big") ;
+ return wrap(dx*dx) ;
+ ', Rcpp = TRUE,
+ includes = "using namespace Rcpp;")
> tryCatch(fun(12),
+ "std::range_error" = function(e)
+ writeLines(conditionMessage(e))
+)
too big

R error in C++

R currently does not offer C-level mechanisms to
deal with errors. To overcome this problem, Rcpp
uses the Rcpp::Evaluator class to evaluate an ex-
pression with an R-level tryCatch block. The error, if
any, that occurs while evaluating the function is then
translated in terms of an C++ exception.

6The version of lapply does not include usage of the ellipsis (...).

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 7

Performance comparison

In this section, we illustrate how C++ features may
well come with a price in terms of performance.
However, as users of Rcpp, we do not need to com-
promise performance for ease of use.

As part of the redesign of Rcpp, data copy is kept
to the absolute minimum. The RObject class and
all its derived classes are just a container for a SEXP.
We let R perform all memory management and ac-
cess data though the macros or functions offered by
the standard R API. In contrast, some data structures
of the classic Rcpp interface such as the templated
RcppVector used containers offered by the standard
template library to hold the data, requiring explicit
copies of the data from R to C++ and back.

Here we illustrate how to take advantage of Rcpp
to get the best of both worlds. The classic Rcpp trans-
lation of the convolve example from R Development
Core Team (2009a) appears twice above where the
second example showed the use with the new API.

The implementation of the operator[] is de-
signed as efficiently as possible, using both inlining
and caching, but even this implementation is still
less efficient than the reference C implementation de-
scribed in R Development Core Team (2009a).

In order to achieve maximum efficiency, the ref-
erence implementation extracts the underlying array
pointer double* and works with pointer arithmetics,
which is a built-in operation as opposed to calling the
operator[] on a user-defined class which has to pay
the price of object encapsulation.

Modelled after containers of the C++ STL, the
NumericVector class provides two member functions
begin and end that can use used to retrieve respec-
tively the pointer to the first and past-to-end ele-
ments of the underlying array. We can revisit the
code to take advantage of this feature :

#include <Rcpp.h>

RcppExport SEXP convolve4cpp(SEXP a, SEXP b){
Rcpp::NumericVector xa(a);
Rcpp::NumericVector xb(b);
int n_xa = xa.size() ;
int n_xb = xb.size() ;
Rcpp::NumericVector xab(n_xa + n_xb - 1);

double* pa = xa.begin() ;
double* pb = xb.begin() ;
double* pab = xab.begin() ;
int i,j=0;
for (i = 0; i < n_xa; i++)

for (j = 0; j < n_xb; j++)
pab[i + j] += pa[i] * pb[j];

return xab ;
}

We have benchmarked the various implementa-
tions by averaging over 1000 calls of each function
with a and b containing 100 elements each.7 The tim-
ings are summarized in the table below:

Implementation Time in Relative
millisec to R API

R API (as benchmark) 32
RcppVector<double> 354 11.1
NumericVector::operator[] 52 1.6
NumericVector::begin 33 1.0

Table 2: Performance for convolution example

The first implementation, using the traditional R
API, unsurprisingly appears to be the most efficient.
It takes advantage of pointer arithmetics and does
not pay the price of object encapsulation. This pro-
vides our base case.

The second implementation—from the classic
Rcpp API—is clearly behind in terms of efficiency.
The difference is mainly caused by the many unnec-
essary copies that the RcppVector<double> class per-
forms. First, both objects (a and b) are copied into
C++ structures (xa and xb). Then, the result is con-
structed as another RcppVector<double> (xab) that is
filled using the operator() which checks at each ac-
cess that the index is suitable for the object. Finally,
xab is converted back to an R object.

The third implementation—using the more effi-
cient new Rcpp API—is already orders of magnitude
faster than the preceding solution. Yet it illustrates
the price of object encapsulation and of calling an
overloaded operator[] as opposed to using pointer
arithmetics.

Finally, the last implementation comes very close
to the base case and shows the code using the new
API can essentially as fast as the R API base case
while being easier to write.

Summary

The Rcpp package greatly simplifies integration of
compiled C++ code with R.

The class hierarchy allows manipulation of R data
structures in C++ using member functions and oper-
ators directly related to the type of object being used,
therefore reducing the level of expertise required to
master the various functions and macros offered by
the internal R API. The classes assume the entire re-
sponsibility of garbage collection of objects, relieving
the programmer from book-keeping operations with
the protection stack and enabling him/her to focus
on the underlying problem.

Data interchange between R and C++ code—
performed by the wrap and as template functions—

7The code for this example is contained in the directory inst/examples/ConvolveBenchmarks in the Rcpp package.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 8

allows the programmer to write logic in terms of C++
data structures and facilitates use of modern libraries
such as the standard template library and its contain-
ers and algorithms. The wrap() and as() template
functions are extensible by design and can be used
either explicitly or implicitly throughout the API. By
using only thin wrappers around SEXP objects, the
footprint of the Rcpp API is very lightweight, and
does not induces a significant performance price.

The Rcpp API offers opportunities to dramatically
reduce the complexity of code, which should im-
prove code readability, maintainability and reuse.

Bibliography

W. Armstrong. RAbstraction: C++ abstraction for R ob-
jects, 2009a. URL http://github.com/armstrtw/
rabstraction. Code repository last updated July
22, 2009.

W. Armstrong. RObjects: C++ wrapper for R objects (a
better implementation of RAbstraction, 2009b. URL
http://github.com/armstrtw/RObjects. Code
repository last updated November 28, 2009.

D. M. Bates and S. DebRoy. C++ classes for R ob-
jects. In K. H. . F. Leisch, editor, Proceedings of the
2nd International Workshop on Distributed Statistical
Computing, TU Vienna, Austria, 2001.

D. Eddelbuettel and R. François. RInside: C++ classes
to embed R in C++ applications, 2010. URL http:
//CRAN.R-project.org/package=RInside. R pack-
age version 0.2.2.

D. Eddelbuettel and K. Nguyen. RQuantLib: R in-
terface to the QuantLib library, 2009. URL http://
CRAN.R-project.org/package=RQuantLib. R pack-
age version 0.3.1.

R. François and D. Eddelbuettel. RProtoBuf: R Inter-
face to the Protocol Buffers API, 2010. URL http://
CRAN.R-project.org/package=RProtoBuf. R pack-
age version 0.1-0.

J. J. Java, D. P. Gaile, and K. E. Manly. R/Cpp:
Interface classes to simplify using R objects
in C++ extensions. Unpublished manuscript,
University at Buffalo, July 2007. URL
http://sphhp.buffalo.edu/biostat/research/
techreports/UB_Biostatistics_TR0702.pdf.

G. Liang. rcppbind: A template library for R/C++ de-
velopers, 2008. URL http://r-forge.r-project.
org/projects/rcppbind/. R package version 1.0.

S. Meyers. Effective C++: 55 Specific Ways to Im-
prove Your Programs and Designs. Addison-Wesley
Professional, third edition, 2005. ISBN 978-
0321334879.

P. Plauger, A. Stepanov, M. Lee, and D. R. Musser.
The C++ Standard Template Library. Prentice Hall
PTR, 2000. ISBN 978-0134376332.

R Development Core Team. Writing R extensions.
R Foundation for Statistical Computing, Vienna,
Austria, 2009a. URL http://cran.r-project.
org/doc/manuals/R-exts.html.

R Development Core Team. R internals. R Foun-
dation for Statistical Computing, Vienna, Austria,
2009b. URL http://cran.r-project.org/doc/
manuals/R-ints.html.

A. Runnalls. Aspects of CXXR internals. In Directions
in Statistical Computing, University of Copenhagen,
Denmark, 2009.

D. Samperi. RcppTemplate: Rcpp R/C++ Ob-
ject Mapping Library and Package Template, 2009.
URL http://CRAN.R-project.org/src/contrib/
Archive/RcppTemplate. (Archived) R package ver-
sion 6.1.

O. Sklyar, D. Murdoch, M. Smith, and D. Eddel-
buettel. inline: Inline C, C++, Fortran function calls
from R, 2009. URL http://CRAN.R-project.org/
package=inline. R package version 0.3.4.

D. Temple Lang. A modest proposal: an approach to
making the internal R system extensible. Computa-
tional Statistics, 24(2):271–281, May 2009a.

D. Temple Lang. Working with meta-data from
C/C++ code in R: the RGCCTranslationUnit pack-
age. Computational Statistics, 24(2):283–293, May
2009b.

S. Urbanek. Rserve: Binary R server, 2009. URL
http://www.rforge.net/Rserve/. R package ver-
sion 0.6-1.

Dirk Eddelbuettel
Debian Project
Chicago, IL
USA
edd@debian.org

Romain François
Professionnal R Enthusiast
3 rue Emile Bonnet, 34 090 Montpellier
FRANCE
romain@r-enthusiasts.com

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/RObjects
http://CRAN.R-project.org/package=RInside
http://CRAN.R-project.org/package=RInside
http://CRAN.R-project.org/package=RQuantLib
http://CRAN.R-project.org/package=RQuantLib
http://CRAN.R-project.org/package=RProtoBuf
http://CRAN.R-project.org/package=RProtoBuf
http://sphhp.buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf
http://sphhp.buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf
http://r-forge.r-project.org/projects/rcppbind/
http://r-forge.r-project.org/projects/rcppbind/
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-ints.html
http://cran.r-project.org/doc/manuals/R-ints.html
http://CRAN.R-project.org/src/contrib/Archive/RcppTemplate
http://CRAN.R-project.org/src/contrib/Archive/RcppTemplate
http://CRAN.R-project.org/package=inline
http://CRAN.R-project.org/package=inline
http://www.rforge.net/Rserve/
mailto:edd@debian.org
mailto:romain@r-enthusiasts.com

	Rcpp: Seamless R and C++ integration
	Introduction
	Historical Context
	Comparison

	Classic Rcpp API
	New Rcpp API
	Rcpp Class hierarchy
	Derived classes
	Numeric vectors
	Character vectors

	R and C++ data interchange
	C++ to R : wrap
	R to C++ : as
	Implicit use of converters

	Function calls
	Using code `inline'
	Using STL algorithms
	Error handling
	C++ exceptions in R
	R error in C++

	Performance comparison
	Summary

