<div dir="ltr">Hello!<div><br></div><div>I've been analyzing a two treatment list experiment that has been properly randomly assigned. </div><div><br></div><div>I just ran the following regression with one simple explanatory bivariate variable (gender), but received the following error:</div>

<div><font face="courier new, monospace"><br></font></div><div><div><font face="courier new, monospace">> ml.resultsnp <- ictreg(outcome ~ male, data = true_subsetnp, treat = "treatstatnp", J=4, method = "ml")</font></div>

<div><font face="courier new, monospace"><br></font></div><div><font face="courier new, monospace">Error in solve.default(-MLEfit$hessian) : </font></div><div><font face="courier new, monospace">  system is computationally singular: reciprocal condition number = 7.02376e-18</font></div>

</div><div><br></div><div>I then added an additional covariate (logged age), and the model converges, but with exploding standard errors:</div><div><br></div><div><div><font face="courier new, monospace">Item Count Technique Regression </font></div>

<div><font face="courier new, monospace"><br></font></div><div><font face="courier new, monospace">Call: ictreg(formula = outcome ~ male + lage, data = true_subsetnp, </font></div><div><font face="courier new, monospace">    treat = "treatstatnp", J = 4, method = "ml")</font></div>

<div><font face="courier new, monospace"><br></font></div><div><font face="courier new, monospace">Sensitive item (1)</font></div><div><font face="courier new, monospace">                Est.    S.E.</font></div><div><font face="courier new, monospace">(Intercept)  3.94811 4.15077</font></div>

<div><font face="courier new, monospace">male        -1.43966 1.21671</font></div><div><font face="courier new, monospace">lage        -1.78966 1.14337</font></div><div><font face="courier new, monospace"><br></font></div>

<div><font face="courier new, monospace">Sensitive item (2)</font></div><div><font face="courier new, monospace">                 Est.       S.E.</font></div><div><font face="courier new, monospace">(Intercept)  -7.93707   10.31522</font></div>

<div><b><font face="courier new, monospace">male        -16.06552 2965.82521</font></b></div><div><font face="courier new, monospace">lage          0.99201    2.63957</font></div><div><font face="courier new, monospace"><br>

</font></div><div><font face="courier new, monospace">Control items</font></div><div><font face="courier new, monospace">                Est.    S.E.</font></div><div><font face="courier new, monospace">(Intercept)  0.21267 0.25312</font></div>

<div><font face="courier new, monospace">male         0.00017 0.05277</font></div><div><font face="courier new, monospace">lage        -0.04225 0.06603</font></div><div><font face="courier new, monospace"><br></font></div>

<div><font face="courier new, monospace">Log-likelihood: -2039.366</font></div><div><font face="courier new, monospace"><br></font></div><div><font face="courier new, monospace">Number of control items J set to 4. Treatment groups were indicated by '1' and '2' and the control group by '0'.</font></div>

<div><br></div><div>A variety of other model specifications return very similar results: either failing to converge/compute or returning point estimates and very large standard errors (sometimes nearly exactly the same values for not at all correlated variables).</div>

<div><br></div><div>Does anyone have any suggestions about what might be going wrong? </div><div><br></div><div>Thanks,</div><div><br></div><div>David</div><div><br></div><div><br></div>-- <br><div dir="ltr">David Szakonyi<br>

Ph.D Candidate - Comparative Politics<br>Columbia University<br><a href="mailto:ds2875@columbia.edu" target="_blank">ds2875@columbia.edu</a><br></div></div></div>