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Section I of this Internet Appendix describes the full set of parameter estimates

for the four Bayesian models (CV, CV-DC, SV, and SV-DC). Section II shows the

simulation results used to determine statistical significance. Section III describes the

portfolio weights for both cash dividends and net payout yields. Section IV shows the

conditional and unconditional excess market return distributions. Section V describes

the particle filter algorithms for the four Bayesian models in detail, and Section VI

explains the calculation of Savage Density ratios for the hypothesis tests in Figure

IA.10.
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I. Full Parameter Estimates

A. CV Model

The CV model jointly specifies the process for returns and payout ratios, as shown in

equations (2) and (7) in the published article, where the volatilities are assumed to be

constant. Figure IA.1 shows the sequential parameter estimates of the CV model, using

the cash dividend yield as the predictor variable, xt. For each parameter, we summarize

the posterior distribution at each point in time via its mean (the solid line) and a (1, 99)%

posterior probability interval (the shaded area). The figure reveals wide posterior bands at

the beginning of the sample, consistent with the relatively uninformative priors from the

generally short training sample. As new data arrive, the investor’s view of the location

and uncertainty of the parameters changes drastically. Most notably, the volatility in

the returns equation declines substantially over time. This is merely an implication of

the large fluctuations in market volatility, which are easiest to detect when the sample

starts in a period of high volatility, such as the 1927 to 1930 period. Since nearly all

studies begin in 1926, discarding the data and starting after World War II merely generates

additional sample selection issues with regard to volatility. The perceived equity premium

is E [α + βxt|yt]. Interestingly, there is little significant variation in the location of α and

β although the posterior confidence bands are naturally much tighter towards the end of

the sample. The estimates of β follow the general pattern of the OLS estimates in Figure

1 of the main paper.

Regarding the dividend yield process, estimates of βx trend upwards, although the
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Figure IA.1. Sequential parameter estimates: CV model with dividend yield. This figure plots
sequential parameter estimates for the CV model,

rt+1 = α+ βxt + σεrt+1

xt+1 = αx + βxxt + σxε
x
t+1,

where rt+1 is the return on the market portfolio in excess of the risk-free rate from month t to month
t + 1. The predictor variable, xt, is the traditional cash dividend yield. The shocks εrt+1 and εxt+1 are
distributed standard normal with correlation coefficient ρ. Each panel displays the posterior means and
(1,99)% posterior probability intervals (the grey shaded area) for each time period. Excess market return
volatility, σ, is annualized.
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Figure IA.2. Sequential parameter estimates: CV model with net payout yield. This figure
plots sequential parameter estimates for the CV model,

rt+1 = α+ βxt + σεrt+1

xt+1 = αx + βxxt + σxε
x
t+1,

where rt+1 is the return on the market portfolio in excess of the risk-free rate from month t to month t+1.
The predictor variable, xt, is the net payout yield of Boudoukh et al. (2007). The shocks εrt+1 and εxt+1 are
distributed standard normal with correlation coefficient ρ. Each panel displays the posterior means and
(1,99)% posterior probability intervals (the grey shaded area) for each time period. Excess market return
volatility, σ, is annualized.

4



movement is not large. Brav et al. (2005) present evidence that the speed of mean reversion

for dividends has slowed in the second half of the 20th century, making dividend yields more

persistent. If so, our results indicate the rate of structural change is rather slow, inconsistent

with either a regime-switching or an abrupt structural break model.

Figure IA.2 uses the net payout yield as the predictor variable. There are a number of

important differences. Although the estimates of α, β, and σ are quite similar, the estimates

for the payout ratio series are not. There is an abrupt change in the parameters of the net

payout process in the early 1980s, in particular, in αx, βx, and ρ. This result is suggestive

of a structural break in the dynamics of net payouts, something more substantial than just

parameter uncertainty. Interestingly, Boudoukh et al. (2007) formally test for a structural

break and find no evidence; however, we use monthly data, whereas they focus on annual

data. The source of the variation can be found in Figure 1 of the main paper, where we can

see that in the early 1980s the net payout variable had a series of high frequency shocks.

The net effect of making the process less persistent is that it reduces the autocorrelation

(βx). These high frequency fluctuations have an even greater impact on ρ, as the relatively

stable link between payout ratio shocks and market returns is broken. The source of these

shocks is a sudden increase in net repurchases, which no doubt corresponds to a structural

economic change following the adoption in 1982 of SEC rule 10b-18, providing safe harbor

from liability for firms repurchasing shares in accordance with the rule’s conditions.

To formally assess the strength of predictability, Figure IA.3 summarizes the posterior

probabilities in the benchmark model for tests of β = 0 and βdp = 1 – the unit root case.

Using our particle filter, we calculate the Bayes factor for H0 : β = 0 versus H1 : β �= 0 as
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Figure IA.3. Hypothesis tests. This figure plots posterior probabilities for hypothesis tests of no
predictability (left-hand-side plots) and a unit root in the predictor process (right-hand-side plots). The
predictor variable is either dividend yield (solid line) or net payout yield (striped line). CV and SV
represent models with expected return predictability and constant volatility (CV) and stochastic volatility
(SV), respectively. DC stands for drifting coefficients and represents models where the predictability
coefficient is allowed to vary over time. The null hypothesis for no predictability is H0 : β = 0 in the CV
and SV models or H0 : β0 + βt = 0 in the DC and SV-DC models. The null hypothesis for a unit root in
the predictor process is H0 : βx = 1.
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follows:

BF t
0,1 =

p (β = 0|yt,H1)

p (β = 0|H1)
≈ 1

N

N∑
i=1

p
(
β = 0|θ(i), s(i)t , yt,H1

)
p (β = 0|H1)

.

Here p(β|θ(i), s(i)t , yt) is the normal distribution (see Section D) and θ(i) is the filtered

parameter vector for particle i at time t. Since we use a Bayesian regression to train the

prior, the denominator is easy to calculate from p (β|H1), which is a Student t distribution.

The calculation forH0 : βdp = 1 is analogous. For more details on calculating Bayes factors,

see Section E of this appendix.

For the traditional dividend yield measure in the top-left panel of Figure IA.3, we find

that there is little statistical evidence in favor of predictability. In the net payout data,

the posterior probability of H0 : β = 0 slowly decreases to around 20% as parameter

uncertainty decreases, but the decline in the predictability coefficient starting in the early

1990s reverses this trend, and ends up around 70%. This confirms the findings Boudoukh

et al. (2007), as the weight of evidence against the hypothesis that β = 0 is much stronger

using net payouts instead of the traditional cash dividend yield measure. The posterior

probability of a unit root in dividend yields fluctuates significantly for the benchmark

model, but the results generally favor a unit root and for net payout yield there is little

evidence of any nonstationarity.

B. CV-DC Model

Figure IA.4 shows the parameter estimates for the drifting coefficients (CV-DC) model

in equations (5) through (7) in the main article, using the cash dividend yield as predictor

and assuming constant variances. In this model predictability consists of two components,
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a long-run average, β0, and a time-varying component, βt, with expected excess returns

given by E [α + (β0 + βt)xt|yt]. The long-run average predictability, β0, is statistically in-

distinguishable from zero for virtually the entire sample period, as shown by the (1, 99)%

posterior probability interval. The time-varying component, βt, reveals substantial varia-

tion around the long-run average. Figure IA.6 shows that this variation is related to real

GDP growth, with βt higher in recessions and lower in expansions (Henkel, Martin, and

Nardari (2011); Dangl and Halling (2012) also document this countercyclicality). However,

the variation is not economically large and rarely statistically significant. The βt process

is highly persistent, with an autoregressive coefficient ββ of about 0.97, and the volatility

of the shocks, σβ , is around 0.001.

The posterior probability for the hypothesis test β0+βt = 0 is analyzed in Figure IA.3.

The probability is close to one for the entire sample, strongly supporting no predictability.

This pattern in predictability from the CV-DC model is distinctly different from that of

the cumulative OLS regressions in Figure 1 of the main text and the benchmark model in

Figure IA.1.

The results for the net payout measure in Figure IA.5 are closer to the CV model. Figure

IA.3 shows that the posterior probability of the null tracks closely with the benchmark

model. At one point in the late 1960s, there was strong evidence for predictability, but that

predictability quickly vanished in the 1970s. The posterior probability of no predictability

has remained between 50% and 90% since then. The long-run average predictability, β0, is

high compared to the dividend yield variable, and is close to the estimate of βx in the CV

model. The time-varying component is stable, showing little variation around the long-run
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Figure IA.4. Sequential parameter estimates: CV-DC model with dividend yield. This figure
plots sequential parameter estimates for the drifting coefficients model using the traditional dividend yield
as predictor. The time-varying predictability coefficient follows an AR(1) process, βt+1 = βββt + σβε

β
t+1.

The other coefficients are as defined in figure IA.1. Each panel displays the posterior means and (1,99)%
posterior credible intervals for each time period. Return volatility is annualized.
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Figure IA.5. Sequential parameter estimates: CV-DC model with net payout yield. This
figure plots sequential parameter estimates for the drifting coefficients model using the net payout yield
as predictor. The time-varying predictability coefficient follows an AR(1) process, βt+1 = βββt + σβε

β
t+1.

The other coefficients are as defined in figure IA.2. Each panel displays the posterior means and (1,99)%
posterior credible intervals for each time period. Return volatility is annualized.

10



1930 1938 1948 1958 1968 1978 1988 1998 2008
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
Dividend yield data

 

 
β

t
 (CV−DC)

β
t
 (SV−DC)

real GDP growth

1930 1938 1948 1958 1968 1978 1988 1998 2007
−3

−2

−1

0

1

2

3
x 10

−3 Net payout yield data

Figure IA.6. Drifting predictability coefficient. This figure depicts time series plots of the posterior
mean of βt, the drifting component of the predictability coefficient, plotted against real GDP growth
(normalized to have the same standard deviation as βt). The grey shaded areas are NBER peak-to-trough
recessions. The top plot uses the traditional cash dividend yield as the predictor variable, whereas the
bottom plot uses the net payout yield. The CV-DC model has constant volatility and the SV-DC model
has stochastic volatility.
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mean for most of the sample. The total predictability coefficient, β0 + βt, therefore hovers

very closely around the CV estimate.

Investors learn about the level of long-term predictability, β0, as evidenced by the

tightening (1, 99)% bounds in Figures IA.4 and IA.5. The bounds for the time-varying

component, βt, tighten only slightly over the sample period, and only to the extent that

investors learn about ββ and σβ , the parameters that govern the process of the time-varying

coefficient. In other words, investors learn the long-run mean predictability and the process

of the time-varying component, but never learn the exact predictability coefficient at a given

point in time. The economic implication is that learning remains important in drifting

coefficient models, even in very large data sets, whereas the effects of learning on portfolio

formation wanes over time in constant coefficient models (such as our CV model). This is

true in general for models with unobserved and time-varying state variables.

C. SV Model

Figure IA.7 displays the stochastic volatility (SV) model estimates using cash dividends.

This model is expressed in equations (2) and (7) in the main article. It has constant

regression coefficients, like the benchmark model, but allows for stochastic volatility in

both the excess return and payout yield equations.

The posterior mean estimates of the regression coefficients, α, β, αx, and βx, are different

from those obtained in the constant volatility (CV) model due to the “GLS versus OLS”

distinction, where periods of high volatility are down-weighted in the SV model but not in

the CV model.
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Figure IA.7. Sequential parameter estimates: SV model with dividend yield. This figure plots
sequential parameter estimates for the SV model using the traditional dividend yield as predictor. The
log-volatilities follow AR(1) processes

V r
t+1 = αr + βrV

r
t + σrη

r
t+1

V x
t+1 = αv + βvV

x
t + σvη

v
t+1.

All other parameters are as in figure IA.1. Each panel displays the posterior means and (1,99)% posterior
credible intervals for each time period. Return and dividend yield volatilities are annualized.
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Figure IA.8. Sequential parameter estimates: SV model with net payout yield. This figure
plots sequential parameter estimates for the SV model using the net payout yield as predictor. The log-
volatilities follow AR(1) processes
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r
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r
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V x
t+1 = αv + βvV

x
t + σvη

v
t+1.

All other parameters are as in figure IA.2. Each panel displays the posterior means and (1,99)% posterior
credible intervals for each time period. Return and net payout yield volatilities are annualized.
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Excess return volatility, V r, is high in the 1930s, during the oil crisis of the 1970s,

during the crash of 1987, in the Internet period 1997 to 2001, and during the credit crisis

of 2008. Dividend yield volatility, V x, is high in the 1930s and during the 1970s and early

1980s. The volatility processes of excess returns and dividend yields are very persistent,

with autoregressive coefficients around 0.95. In comparison, Markov Chain Monte Carlo

(MCMC) estimates of the autoregressive coefficient of excess return volatility are around

0.98 (Johannes, Polson, and Stroud (2002)).

For the net payout data, excess return volatility shows the same pattern as cash divi-

dends, but the volatility for the predictor variable exhibits a different pattern. In contrast

to dividend yield, net payout volatility is low in the 1930s but high during the early 2000s,

when dividends remained stable but issuances and repurchases spiked (Boudoukh et al.

(2007)). There are two extreme volatility spikes, in the early 1980s and in 2000. The

volatility shocks absorb the large shocks to net payouts during that period, and αx, βx,

and ρ do not show the breaks that we find in the CV and CV-DC models.

D. SV-DC Model

Both features of the SV and DC models are present in the full-fledged SV-DC model in

equations (5) through (7) in the published article. Figures IA.9 and IA.10 show sequential

parameter estimates of the SV-DC model using the cash dividend yield and the net payout

yield, respectively, as the predictor variable. For the dividend yield estimates in Figure

IA.9, the most notable difference is that the process for βt is slightly less persistent (i.e.,

the autoregressive coefficient ββ is lower), which causes shocks to βt to dissipate faster. The
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Figure IA.9. Sequential parameter estimates: SV-DC model with dividend yield. This figure
plots sequential parameter estimates for the stochastic volatility and drifting coefficients model using the
traditional dividend yield as predictor. The parameters are as defined in figures IA.4 and IA.7. Each panel
displays the posterior means and (1,99)% posterior credible intervals for each time period. Return and
dividend yield volatilities are annualized.
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Figure IA.10. Sequential parameter estimates: SV-DC model with net payout yield. This
figure plots sequential parameter estimates for the stochastic volatility and drifting coefficients model using
the net payout yield as predictor. The parameters are as defined in figures IA.5 and IA.8. Each panel
displays the posterior means and (1,99)% posterior credible intervals for each time period. Return and net
payout yield volatilities are annualized.
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evidence for or against predictability is quite volatile, as both volatility and the regression

coefficients move over time. At the end of the sample, there is very strong evidence against

predictability, using either data set.

II. Simulation Results for Statistical Significance

To judge statistical significance, we simulate 500 data sets of a model that has no

predictability by construction:

rt+1 = α + σεrt+1 (IA.1)

xt+1 = αx + βxxt + σxε
x
t+1. (IA.2)

We calibrate the model to the observed data, generating returns and predictors with the

same expected returns and variances as our empirical data set. The predictors are also

calibrated to have the same autocorrelation as we observe in the data. We then estimate

our various models on the simulated data sets and report the mean certainty equivalent

return and Sharpe ratio, as well as the 90th and 95th percentiles across data sets. Tables

IA.I and IA.II show the results for the simulated dividend yield and net payout yield,

respectively.

In Tables IA.III and IA.IV we perform a similar exercise for dividend yield and net

payout yield, respectively, but we simulate data with stochastic volatility in both the returns

and the predictor variables while maintaining no predictability by construction. We chose
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Table IA.I

Statistical Significance: Dividend Yield Data
This table reports summary statistics of annualized certainty equivalent returns (Panel A) and monthly
Sharpe ratios (Panel B) across 500 simulated data sets for a power utility investor with risk aversion γ.
Simulated data sets are of the same size, and the same means and covariances, as the empirical data set,
but with no predictability. The top line for each model shows the mean statistic across data sets, followed
by the 90th and 95th percentiles.

Panel A: Certainty equivalent returns (in % per annum)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-CM mean 2.60 4.10 4.10 3.26 3.93 3.93

90th percentile 5.85 5.92 5.92 5.12 5.16 5.16
95th percentile 6.20 6.17 6.17 5.35 5.31 5.31

CV-OLS mean -4.84 -4.73 -4.85 -3.45 -4.01 -6.45
90th percentile 5.19 5.30 5.31 4.68 4.74 4.75
95th percentile 5.99 5.90 5.92 5.22 5.15 5.15

CV-rolling OLS mean -23.84 -23.88 -25.03 -42.46 -45.95 -47.55
90th percentile -8.95 -8.69 -9.54 -12.69 -13.28 -14.58
95th percentile -6.15 -6.33 -7.03 -9.96 -10.17 -11.53

CV mean -3.89 3.66 3.51 -2.32 3.63 3.48
90th percentile 5.47 5.84 5.84 4.87 5.08 5.11
95th percentile 6.16 6.30 6.30 5.32 5.42 5.42

CV-DC mean -5.09 4.49 4.53 -1.71 4.14 4.17
90th percentile 5.09 5.91 5.92 4.59 5.18 5.16
95th percentile 5.74 6.18 6.19 5.05 5.34 5.37

SV-CM mean 4.37 5.20 5.21 4.00 4.64 4.65
90th percentile 5.89 6.10 6.10 5.14 5.26 5.26
95th percentile 6.13 6.25 6.25 5.31 5.36 5.37

SV mean 3.32 5.10 5.10 3.18 4.57 4.57
90th percentile 5.55 6.30 6.34 4.88 5.42 5.43
95th percentile 6.00 6.50 6.53 5.17 5.55 5.56

SV-DC mean -0.20 5.01 5.00 -0.84 4.53 4.52
90th percentile 5.18 6.11 6.07 4.64 5.30 5.26
95th percentile 5.78 6.42 6.37 5.04 5.49 5.45
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Panel B: Sharpe ratios (monthly)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-CM mean 0.086 0.093 0.093 0.086 0.093 0.093

90th percentile 0.125 0.128 0.128 0.124 0.129 0.129
95th percentile 0.133 0.136 0.136 0.133 0.136 0.136

CV-OLS mean 0.059 0.072 0.072 0.059 0.071 0.071
90th percentile 0.110 0.117 0.116 0.108 0.116 0.116
95th percentile 0.126 0.129 0.130 0.125 0.129 0.130

CV-rolling OLS mean 0.063 0.071 0.072 0.059 0.067 0.068
90th percentile 0.108 0.114 0.114 0.104 0.109 0.110
95th percentile 0.121 0.123 0.123 0.117 0.120 0.121

CV mean 0.072 0.085 0.086 0.071 0.085 0.085
90th percentile 0.118 0.124 0.126 0.118 0.125 0.126
95th percentile 0.131 0.136 0.135 0.131 0.135 0.135

CV-DC mean 0.068 0.089 0.090 0.067 0.088 0.089
90th percentile 0.113 0.124 0.126 0.112 0.125 0.127
95th percentile 0.123 0.134 0.135 0.123 0.134 0.135

SV-CM mean 0.088 0.103 0.104 0.086 0.102 0.102
90th percentile 0.129 0.132 0.132 0.129 0.132 0.132
95th percentile 0.137 0.140 0.140 0.137 0.139 0.140

SV mean 0.073 0.099 0.100 0.071 0.098 0.099
90th percentile 0.117 0.138 0.138 0.116 0.137 0.138
95th percentile 0.126 0.143 0.143 0.125 0.143 0.143

SV-DC mean 0.064 0.096 0.096 0.063 0.095 0.095
90th percentile 0.113 0.133 0.133 0.113 0.134 0.133
95th percentile 0.122 0.142 0.142 0.122 0.142 0.142
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Table IA.II

Statistical Significance: Net Payout Yield Data
This table reports summary statistics of annualized certainty equivalent returns (Panel A) and monthly
Sharpe ratios (Panel B) across 500 simulated data sets for a power utility investor with risk aversion γ.
Simulated data sets are of the same size, and the same means and covariances, as the empirical data set,
but with no predictability. The top line for each model shows the mean statistic across data sets, followed
by the 90th and 95th percentiles.

Panel A: Certainty equivalent returns (in % per annum)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-OLS mean -5.11 -1.24 -1.20 -7.05 -6.44 -6.39

90th percentile 5.68 6.32 6.31 5.02 5.42 5.43
95th percentile 6.33 6.74 6.75 5.47 5.71 5.73

CV-rolling OLS mean -20.88 -17.06 -16.56 -40.85 -40.60 -40.04
90th percentile -5.14 -4.02 -3.94 -8.75 -6.88 -6.71
95th percentile -3.10 -1.70 -1.64 -5.68 -4.80 -4.64

CV mean -3.80 4.43 4.53 -3.97 4.21 4.26
90th percentile 6.10 6.42 6.43 5.27 5.49 5.50
95th percentile 6.56 6.79 6.78 5.59 5.74 5.76

CV-DC mean -4.08 4.94 5.01 -3.59 4.47 4.54
90th percentile 5.68 6.35 6.34 4.99 5.45 5.45
95th percentile 6.19 6.75 6.75 5.34 5.73 5.71

SV mean 4.32 5.72 5.72 3.92 5.01 5.02
90th percentile 6.09 6.74 6.74 5.29 5.71 5.70
95th percentile 6.49 6.89 6.90 5.52 5.82 5.83

SV-DC mean 1.54 5.58 5.55 1.60 4.92 4.90
90th percentile 5.63 6.59 6.55 4.97 5.62 5.59
95th percentile 6.18 6.83 6.76 5.33 5.79 5.73
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Panel B: Sharpe ratios (monthly)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-OLS mean 0.069 0.088 0.089 0.068 0.087 0.087

90th percentile 0.120 0.135 0.135 0.119 0.134 0.135
95th percentile 0.135 0.145 0.145 0.135 0.145 0.145

CV-rolling OLS mean 0.079 0.088 0.088 0.076 0.084 0.084
90th percentile 0.123 0.127 0.127 0.119 0.121 0.121
95th percentile 0.132 0.137 0.137 0.128 0.132 0.132

CV mean 0.083 0.102 0.103 0.082 0.102 0.102
90th percentile 0.129 0.142 0.142 0.129 0.142 0.142
95th percentile 0.142 0.151 0.151 0.142 0.150 0.151

CV-DC mean 0.078 0.104 0.105 0.077 0.104 0.104
90th percentile 0.124 0.142 0.143 0.123 0.142 0.143
95th percentile 0.134 0.152 0.153 0.134 0.151 0.152

SV mean 0.091 0.121 0.121 0.088 0.120 0.120
90th percentile 0.128 0.150 0.150 0.128 0.150 0.150
95th percentile 0.140 0.157 0.156 0.140 0.158 0.157

SV-DC mean 0.077 0.117 0.116 0.075 0.116 0.116
90th percentile 0.120 0.149 0.149 0.120 0.150 0.150
95th percentile 0.129 0.155 0.154 0.129 0.155 0.156
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Table IA.III

Statistical Significance: Dividend Yield Data with Stochastic
Volatility

This table reports summary statistics of annualized certainty equivalent returns (Panel A) and monthly
Sharpe ratios (Panel B) across 500 simulated data sets for a power utility investor with risk aversion
coefficient γ. The simulated data sets are of the same size and with the same means as the empirical
data set, but with no predictability. Stochastic volatility parameters are calibrated to match the observed
data. The top line for each model shows the mean statistic across data sets, followed by the 90th and 95th
percentiles.

Panel A: Certainty equivalent returns (in % per annum)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-CM mean 0.51 2.99 2.99 0.84 3.42 3.42

90th percentile 5.83 5.83 5.83 5.09 5.11 5.11
95th percentile 6.13 6.07 6.07 5.29 5.27 5.27

CV-OLS mean -6.57 -6.62 -7.78 -6.48 -14.88 -15.98
90th percentile 5.20 5.31 5.34 4.67 4.74 4.76
95th percentile 5.70 5.70 5.67 5.01 4.98 4.99

CV-rolling OLS mean -24.42 -24.95 -25.94 -45.01 -57.23 -59.25
90th percentile -7.07 -6.99 -7.47 -10.08 -10.48 -10.85
95th percentile -4.51 -3.87 -4.20 -8.15 -6.93 -7.50

CV mean -5.49 2.78 2.54 -4.25 3.15 2.85
90th percentile 5.48 5.66 5.67 4.85 4.99 4.98
95th percentile 5.90 6.00 6.02 5.14 5.23 5.23

CV-DC mean -7.20 4.37 4.42 -5.65 4.06 4.10
90th percentile 5.05 5.66 5.66 4.59 4.98 4.98
95th percentile 5.54 5.93 5.92 4.89 5.16 5.15

SV-CM mean 4.24 5.16 5.16 3.92 4.62 4.62
90th percentile 5.88 6.03 6.03 5.12 5.22 5.22
95th percentile 6.16 6.26 6.26 5.31 5.37 5.37

SV mean 2.66 5.08 5.09 2.13 4.57 4.57
90th percentile 5.50 6.04 6.06 4.81 5.23 5.25
95th percentile 5.87 6.38 6.38 5.09 5.46 5.49

SV-DC mean -1.95 5.03 5.01 -4.33 4.51 4.50
90th percentile 5.32 6.15 6.11 4.75 5.30 5.27
95th percentile 5.85 6.43 6.39 5.09 5.49 5.47
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Panel B: Sharpe ratios (monthly)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-CM mean 0.084 0.091 0.091 0.084 0.091 0.091

90th percentile 0.127 0.131 0.131 0.128 0.131 0.131
95th percentile 0.135 0.137 0.137 0.135 0.137 0.137

CV-OLS mean 0.052 0.067 0.067 0.051 0.066 0.066
90th percentile 0.108 0.113 0.114 0.108 0.113 0.114
95th percentile 0.120 0.125 0.125 0.120 0.124 0.124

CV-rolling OLS mean 0.061 0.069 0.070 0.057 0.065 0.066
90th percentile 0.107 0.112 0.113 0.105 0.108 0.109
95th percentile 0.121 0.121 0.122 0.116 0.118 0.118

CV mean 0.066 0.082 0.082 0.065 0.081 0.081
90th percentile 0.118 0.122 0.123 0.117 0.122 0.124
95th percentile 0.128 0.134 0.135 0.127 0.136 0.136

CV-DC mean 0.061 0.085 0.086 0.060 0.084 0.085
90th percentile 0.111 0.123 0.123 0.110 0.123 0.124
95th percentile 0.123 0.132 0.132 0.121 0.132 0.132

SV-CM mean 0.085 0.101 0.102 0.084 0.100 0.101
90th percentile 0.127 0.131 0.131 0.127 0.132 0.132
95th percentile 0.134 0.138 0.138 0.135 0.137 0.137

SV mean 0.069 0.100 0.100 0.067 0.099 0.099
90th percentile 0.114 0.135 0.136 0.113 0.135 0.135
95th percentile 0.126 0.142 0.143 0.125 0.141 0.142

SV-DC mean 0.065 0.099 0.098 0.063 0.098 0.097
90th percentile 0.116 0.138 0.137 0.116 0.137 0.138
95th percentile 0.127 0.145 0.146 0.126 0.145 0.146
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Table IA.IV

Statistical Significance: Net Payout Yield Data with Stochastic
Volatility

This table reports summary statistics of annualized certainty equivalent returns (Panel A) and monthly
Sharpe ratios (Panel B) across 500 simulated data sets for a power utility investor with risk aversion
coefficient γ. The simulated data sets are of the same size and with the same means as the empirical
data set, but with no predictability. Stochastic volatility parameters are calibrated to match the observed
data. The top line for each model shows the mean statistic across data sets, followed by the 90th and 95th
percentiles.

Panel A: Certainty equivalent returns (in % per annum)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-OLS mean -6.54 -3.47 -2.89 -8.54 -6.78 -4.42

90th percentile 5.69 6.16 6.17 5.01 5.34 5.33
95th percentile 6.11 6.60 6.64 5.28 5.61 5.63

CV-rolling OLS mean -21.64 -18.38 -17.74 -40.95 -39.35 -36.99
90th percentile -4.10 -3.27 -3.09 -6.95 -5.04 -4.97
95th percentile -2.22 -0.59 -0.53 -5.10 -3.83 -3.78

CV mean -5.69 4.31 4.36 -5.33 4.08 4.10
90th percentile 5.96 6.35 6.36 5.19 5.46 5.47
95th percentile 6.40 6.72 6.74 5.49 5.71 5.72

CV-DC mean -6.60 4.90 4.96 -6.64 4.43 4.49
90th percentile 5.77 6.31 6.31 5.08 5.45 5.43
95th percentile 6.26 6.65 6.65 5.42 5.65 5.66

SV mean 3.90 5.65 5.66 3.60 4.97 4.97
90th percentile 6.16 6.76 6.74 5.30 5.71 5.73
95th percentile 6.56 7.05 7.02 5.59 5.93 5.93

SV-DC mean -0.36 5.56 5.53 -3.47 4.91 4.89
90th percentile 5.97 6.61 6.54 5.19 5.62 5.59
95th percentile 6.50 6.88 6.79 5.53 5.79 5.75
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Panel B: Sharpe ratios (monthly)
γ = 4 γ = 6

1m 1y 2y 1m 1y 2y
CV-OLS mean 0.067 0.086 0.087 0.067 0.085 0.086

90th percentile 0.122 0.136 0.137 0.121 0.135 0.137
95th percentile 0.132 0.146 0.146 0.132 0.146 0.146

CV-rolling OLS mean 0.080 0.089 0.089 0.077 0.085 0.085
90th percentile 0.121 0.130 0.131 0.118 0.125 0.126
95th percentile 0.132 0.140 0.140 0.128 0.134 0.134

CV mean 0.082 0.101 0.101 0.081 0.101 0.101
90th percentile 0.130 0.141 0.141 0.131 0.141 0.140
95th percentile 0.141 0.150 0.151 0.140 0.151 0.151

CV-DC mean 0.078 0.104 0.104 0.077 0.103 0.104
90th percentile 0.125 0.139 0.140 0.125 0.139 0.140
95th percentile 0.134 0.151 0.149 0.134 0.150 0.150

SV mean 0.089 0.118 0.119 0.086 0.118 0.118
90th percentile 0.133 0.153 0.153 0.132 0.153 0.152
95th percentile 0.143 0.158 0.158 0.142 0.158 0.159

SV-DC mean 0.078 0.116 0.116 0.076 0.115 0.115
90th percentile 0.128 0.149 0.148 0.128 0.148 0.149
95th percentile 0.139 0.155 0.155 0.138 0.156 0.155
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the parameters of the volatility processes to match the empirical data, with autoregressive

coefficients equal to 0.98, and matching the long-run mean of the volatility process to the

unconditional volatility in the data.

III. Portfolio Weights

Figures IA.11 and IA.12 provide a term structure perspective on the portfolio weights.

The figures display the portfolio weights on different dates for different models and in-

vestment horizons. The various models can generate very different long-horizon moments

and return distributions, due to the time-varying state variables, estimation risk, and pre-

dictability. The differences arise because parameter uncertainty and mean-reversion (in

expected returns and volatilities) impacts predictive moments differently as a function of

investment horizon.

Table IA.V reports means and standard deviations of the portfolio weights, as well as

correlations between the weights and the latent volatility states from the SV model, for

γ = 4. The broad patterns are quite clear. First, the correlation between the portfolio

weights in the SV models and actual volatility is negative and much higher (in an absolute

sense) than in the constant volatility models.1 This clearly demonstrates the volatility

timing result from using models with stochastic volatility. Second, the stochastic volatility

1To calculate the correlation between portfolio weights and the volatility state, we omitted the first 10

years when there is still a lot of updating about the mean and variance in the constant model that can

introduce a spurious correlation.
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Figure IA.11. Optimal portfolio weights by investor horizon: dividend yield data. This figure
plots optimal portfolio weights for an investor who allocates wealth between the market portfolio of stocks
and a risk-free one-period bond, with an investment horizon spanning from one to 10 years. The plots
show the optimal weights on the stock portfolio at the beginning of each decade in our sample period,
as well as at the final datapoint in our sample (December 2008, bottom-right plot). The investor has
power utility with risk aversion γ = 4, and rebalances annually while accounting for all parameter and
state uncertainty. CV and SV represent models with expected return predictability and constant volatility
(CV) and stochastic volatility (SV), respectively. DC stands for drifting coefficients and represents models
where the predictability coefficient is allowed to vary over time. CV-OLS uses the OLS point estimates of
equation (1) in the published paper, with data up to time t.
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Figure IA.12. Optimal portfolio weights by investor horizon: net payout yield data. This
figure plots optimal portfolio weights for an investor who allocates wealth between the market portfolio of
stocks and a risk-free one-period bond, with an investment horizon spanning from one to 10 years. The
plots show the optimal weights on the stock portfolio at the beginning of each decade in our sample period,
as well as at the final datapoint in our sample (December 2008, bottom-right plot). The investor has
power utility with risk aversion γ = 4, and rebalances annually while accounting for all parameter and
state uncertainty. CV and SV represent models with expected return predictability and constant volatility
(CV) and stochastic volatility (SV), respectively. DC stands for drifting coefficients and represents models
where the predictability coefficient is allowed to vary over time. CV-OLS uses the OLS point estimates of
equation (1) in the published paper, with data up to time t.
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Table IA.V

Portfolio Weights Statistics, γ = 4
This table reports basic statistics of portfolio weights across models and investment horizons, for a power
utility investor with risk aversion coefficient γ. The columns “mean” and “std” show the mean and standard
deviation of portfolio weights across all months in our sample. The column “corr” shows the correlation
coefficient between portfolio weights and the conditional volatility state from the SV model, after a burn-in
period of 10 years.

Panel A: Dividend yield data
1m 1y 2y

mean std corr mean std corr mean std corr
Constant volatility models
CV-CM 0.41 0.18 -0.13 0.41 0.16 -0.09 0.41 0.16 -0.09
CV-OLS 0.14 0.27 -0.11 0.30 0.30 0.07 0.33 0.36 0.08
CV-rolling OLS 1.23 1.85 -0.01 1.46 1.80 -0.02 1.54 1.81 -0.01
CV 0.26 0.26 0.11 0.28 0.19 0.06 0.30 0.20 0.06
CV-DC 0.19 0.46 0.08 0.22 0.27 0.13 0.19 0.26 0.13
Stochastic volatility models
SV-CM 1.09 0.56 -0.42 0.75 0.28 -0.18 0.75 0.28 -0.18
SV 0.88 0.50 -0.59 0.57 0.24 -0.25 0.59 0.25 -0.26
SV-DC 0.75 0.70 -0.43 0.40 0.26 -0.12 0.31 0.22 -0.12

Panel B: Net payout yield data
1m 1y 2y

mean std corr mean std corr mean std corr
Constant volatility models
CV-OLS 0.10 0.33 -0.22 0.25 0.29 -0.12 0.27 0.30 -0.13
CV-rolling OLS 1.39 1.72 -0.16 1.55 1.62 -0.09 1.57 1.62 -0.09
CV 0.23 0.33 -0.22 0.26 0.27 -0.12 0.27 0.28 -0.12
CV-DC 0.21 0.37 -0.25 0.23 0.26 -0.16 0.24 0.27 -0.16
Stochastic volatility models
SV 0.64 0.64 -0.46 0.43 0.34 -0.29 0.47 0.36 -0.29
SV-DC 0.78 0.62 -0.53 0.51 0.27 -0.34 0.54 0.29 -0.34
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models generally have higher average weights than the constant volatility models (ignoring

the CV-rolling OLS results). This result occurs for two reasons: (1) the stochastic volatility

models can take significantly larger positions when volatility is low than the constant

volatility models (portfolio weights increase convexly as volatility falls), and (2) volatility

estimates in constant volatility models trend down for the first portion of the sample, as

realized equity volatility fell in the 1940s, 1950s, and 1960s. The constant volatility models

just cannot handle persistent changes in volatility. In the dividend yield model, the SV

model also has higher forecasts of expected returns for much of the sample. Third, constant

mean models (for both stochastic and constant volatility specifications) have slightly higher

average portfolio weights than the models with predictability. This is likely due to a

combination of slightly less parameter uncertainty and drifting in predictability coefficients

(see, for example, Figure 1 of the published paper).

IV. Conditional and Unconditional Return

Distributions

We analyze the conditional and unconditional moments of the excess market return

distribution from the various models through the use of two sets of simulations. We simulate

100,000 one-month returns from the conditional distribution of the excess market returns

using a two-step approach. First, we randomly draw a set of parameters from the joint

posterior distribution of parameters at the midpoint of the sample time series (December

31



1967). Second, we draw a return conditional on the set of parameters, where we set the

state variables (payout yields and volatility states) equal to their sample means.2 Thus,

the simulated distribution is conditional in the sense that it conditions on specific values of

the state variables, while fully reflecting the effects of parameter uncertainty. Given that

the distribution absent uncertainty should be normal by assumption, this distribution is

useful to gauge the impact of uncertainty about parameters and latent volatility states.

The second set of simulations is set up to analyze the unconditional return distribution

from the models. We simulate a time series of 100,000 returns, starting the payout yield

and volatility states at their sample means, and simulating them forward (rather than re-

setting them to their sample means for each draw, as we did when sampling the conditional

return distribution). Hence, this procedure involves an additional step compared to the

simulation of the conditional return distribution above. The unconditional distribution

not only fully reflects the effects of parameter uncertainty, but also, for the models with

stochastic volatility, uncertainty about latent volatility states.

Tables IA.VI and IA.VII show the results. The conditional and unconditional return

distributions for the models with constant volatility (CV-CM, CV-OLS, CV-rolling, CV,

and CV-DC) are similar, with kurtosis slightly above three, and skewness that tends to be

slightly positive. Across all models, the rolling OLS model has the worst fit. In contrast, the

unconditional distributions for the stochastic volatility models (SV-CM, SV, SV-DC, and

SV-corr) have considerably larger variance and kurtosis than the conditional distributions.

2Note that the specification of the model in equation (2) of the paper requires simulating the volatility

state one month ahead.

32



Table IA.VI

Conditional and Unconditional Return Distributions: Dividend
Yield Data

This table reports moments of the unconditional and conditional annualized excess market return distri-
bution (where 0.01 = 1%), based on the posterior distribution of parameters at the midpoint of the sample
time series (December 1967). The top row shows the moments of the data. For each of the models, the mo-
ments of the unconditional excess return distribution are calculated from a time series of 100,000 simulated
returns. The conditional excess return distribution is calculated from 100,000 draws of one-month returns,
with state variables (dividend yield and volatilities) set equal to their long-run means. Both distributions
fully reflect the effects of parameter uncertainty and the uncertainty about latent volatility states, where
applicable. “kurt” is kurtosis (where the Normal distribution has kurtosis of three).

Unconditional excess returns Conditional excess returns
mean st.dev. skew kurt mean st.dev. skew kurt

data 0.056 0.190 -0.535 9.528 - - - -
Constant Volatility models
CV-CM 0.071 0.212 0.011 3.035 0.071 0.212 0.011 3.035
CV-OLS 0.072 0.215 0.010 3.015 0.072 0.215 0.010 3.015
CV-rolling OLS 0.321 0.120 -0.054 2.925 0.324 0.064 0.010 3.015
CV 0.064 0.251 -0.006 3.000 0.064 0.251 -0.002 3.002
CV-DC 0.048 0.287 0.013 3.025 0.049 0.286 0.006 3.014
Stochastic Volatility models
SV-CM 0.173 0.251 0.396 20.422 0.173 0.179 0.036 6.435
SV 0.062 0.288 -0.068 12.997 0.059 0.210 -0.026 3.889
SV-DC 0.173 0.258 -0.069 12.937 0.189 0.181 -0.001 4.005
SV-corr 0.073 0.235 0.019 11.267 0.072 0.201 -0.013 3.173

This is due to the latent volatility state moving around over time, which is incorporated into

the unconditional, but not the conditional, distribution. The unconditional distribution of

these models gets much closer to the distribution of the data compared to the models

with constant volatility. These results underscore once again that stochastic volatility is

important for fitting the kurtosis observed in the data. The SV models also generate

more negative skewness compared to the CV models, although the high negative skewness

observed in the data is more difficult to match.
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Table IA.VII

Conditional and Unconditional Return Distributions: Net
Payout Yield Data

This table reports moments of the unconditional and conditional annualized excess market return distri-
bution (where 0.01 = 1%), based on the posterior distribution of parameters at the midpoint of the sample
time series (December 1967). The top row shows the moments of the data. For each of the models, the
moments of the unconditional excess return distribution are calculated from a time series of 100,000 sim-
ulated returns. The conditional excess return distribution is calculated from 100,000 draws of one-month
returns, with state variables (net payout yield and volatilities) set equal to their long-run means. Both
distributions fully reflect the effects of parameter uncertainty and the uncertainty about latent volatility
states, where applicable. “kurt” is kurtosis (where the Normal distribution has kurtosis of three).

Unconditional excess returns Conditional excess returns
mean st.dev. skew kurt mean st.dev. skew kurt

data 0.056 0.190 -0.535 9.528 - - - -
Constant Volatility models
CV-OLS 0.068 0.216 0.009 3.011 0.065 0.213 0.010 3.015
CV-rolling OLS 0.132 0.095 -0.022 2.989 0.127 0.064 0.010 3.015
CV 0.065 0.265 -0.014 3.000 0.063 0.263 -0.002 3.004
CV-DC 0.063 0.271 -0.007 3.019 0.065 0.269 0.006 3.013
Stochastic Volatility models
SV 0.062 0.278 -0.064 12.278 0.064 0.199 -0.028 3.770
SV-DC 0.084 0.261 0.022 15.618 0.086 0.195 -0.011 4.162
SV-corr 0.072 0.216 -0.004 11.065 0.073 0.179 -0.011 3.069
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V. Particle Filter Algorithms

Our particle filtering and learning algorithm is as follows. First, express p (Lt+1|yt+1) rel-

ative to p (Lt, st, θ|yt). The st are sufficient statistics for the distribution of the parameters,

θ. The continuous distributions are approximated by a set of N particles, pN (Lt, st, θ|yt).

The particles essentially form a histogram, where each particle represents a point in the

support (Lt, st, θ) with a “weight”, w, that corresponds to the height of the histogram:

pN
(
Lt+1|yt+1

)
=

∫
p (yt+1|Lt, st, θ) p (Lt+1|Lt, st, θ, yt+1) dp

N
(
Lt, st, θ|yt

)

=

N∑
i=1

w
(
(Lt, st, θ)

(i)
)
p
(
Lt+1| (Lt, st, θ)

(i) , yt+1

)
,

with weights given by

w
(
(Lt, st, θ)

(i)
)
=

p
(
yt+1| (Lt, st, θ)

(i)
)

∑N
i=1 p

(
yt+1| (Lt, st, θ)

(i)
) .

The distribution pN (Lt+1|yt+1) is then a discrete mixture distribution. To sample from

this distribution, first draw

Step 1: k(i) ∼ Multi
(
w (Lt, st, θ)

(i)
)
.

Now propagate the states and sufficient statistics to (Lt+1)
(i)

Step 2: L
(i)
t+1 ∼ p

(
Lt+1| (Lt, st, θ)

k(i) , yt+1

)

Step 3: s
(i)
t+1 = S

(
sk

(i)

t , L
(i)
t+1, yt+1

)
.

Given sufficient statistics, the parameters are propagated with

Step 4: θ(i) ∼ p
(
θ|s(i)t+1

)
.
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Given these particles, it is easy to estimate parameters, state variables, and marginal

likelihoods. The likelihood component p(yt|Mj) =
∏t

j=1 p(yj|yj−1,Mj) is estimated recur-

sively using

p(yt|yt−1,Mj) ≈ 1

N

N∑
i=1

p(yt|θ(i), s(i)t−1, L
(i)
t−1, y

t−1,Mj).

In the remainder of this section we provide the particle filter for each model in detail.

A. CV Model

The benchmark CV model has no latent state variables since both rt and xt are observed:

rt+1 = α + βxt + σεrt+1 (IA.3)

xt+1 = αx + βxxt + σxε
x
t+1. (IA.4)

The shocks are standard normal random variables with correlation ρ, and the parameter

vector θ = (α, β, αx, βx, σ, σx, ρ). The initial resampling step uses weights proportional to

the predictive likelihood of the new data, yt+1 = [ rt+1 xt+1
]′:

w(st, θ) ∝ p (yt+1|yt, st, θ) = N

⎛
⎜⎝
⎡
⎢⎣ α + βxt

αx + βxxt

⎤
⎥⎦ ,Σ

⎞
⎟⎠ ,

where

Σ =

⎡
⎢⎣ σ2 ρσσx

ρσσx σ2
x

⎤
⎥⎦ .

The parameter posteriors follow from the theory of multivariate normal linear and conjugate

36



Normal-Inverse Wishart priors:

p (Σ|st+1) ∼ IW (ct+1, Ct+1)

p (α, β, αx, βx|Σ, st+1) ∼ N (
vec(μt+1),Σ⊗ A−1

t+1

)
,

where μt+1 = A−1
t+1at+1. The sufficient statistics, st+1, are updated using the recursions:

At+1 = At + ZtZ
′
t

at+1 = at + Zt · y′t+1

Wt+1 = Wt + yt+1 · y′t+1

ct+1 = ct + 1

Ct+1 = C0 +Wt+1 + μt+1At+1μt+1 − μ′
t+1 · at+1 − a′t+1 · μt+1 + (μt+1 − μ0)

′ A0 (μt+1 − μ0) ,

where W0 = 0 and Zt = [ 1 xt
]′.

B. CV-DC Model

The drifting coefficients model has one latent state variable, Lt = βt:

rt+1 = α + βxt + βt+1xt + σεrt+1 (IA.5)

xt+1 = αx + βxxt + σxε
x
t+1, (IA.6)

βt+1 = βββt + σβε
β
t+1. (IA.7)

The innovations in the predictability coefficient, εβt+1, are independent of the shocks εt+1 and

εxt+1. First, resample the particles with weights proportional to the predictive likelihood:

w(Lt, st, θ) ∝ p (yt+1|yt, Lt, st, θ) = N

⎛
⎜⎝
⎡
⎢⎣ α + βxt + βββtxt

αx + βxxt

⎤
⎥⎦ ,Σ +

⎡
⎢⎣ σ2

βx
2
t 0

0 0

⎤
⎥⎦
⎞
⎟⎠ ,
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Next, update the latent state using the Kalman filter recursion

βt+1|Lt, θ, yt+1 ∼ N

⎛
⎜⎝V ·

⎡
⎢⎣βββt/σ

2
β + [xt 0]Σ

−1

⎡
⎢⎣ rt+1 − α− βxt

xt+1 − αx − βxxt

⎤
⎥⎦
⎤
⎥⎦ , V

⎞
⎟⎠ ,

where V −1 = 1/σ2
β + [xt 0]Σ

−1[xt 0]
′.

The parameters of the observation equations are drawn as in the benchmark model,

with Normal-Inverse Wishart conjugate priors. The parameters of the drifting coefficient

evolution are drawn from a linear regression with Normal-Inverse Gamma conjugate prior:

p (Σ|st+1) ∼ IW (ct+1, Ct+1)

p (α, β, αx, βx|Σ, st+1) ∼ N (
vec(μt+1),Σ⊗A−1

t+1

)

p
(
σ2
β|st+1

) ∼ IG (gt+1, Gt+1)

p
(
ββ|σ2

β, st+1

) ∼ N
(
μβ
t+1, σ

2
β

(
Sβ
t+1

)−1
)
,

where μt+1 = A−1
t+1at+1, and μβ

t+1 =
(
Sβ
t+1

)−1

mβ
t+1. The sufficient statistics, st+1, are

updated using the recursions

At+1 = At + ZtZ
′
t

at+1 = at + Zt · Y ′
t+1

Wt+1 = Wt + yt+1 · y′t+1

ct+1 = ct + 1

Ct+1 = C0 +Wt+1 + μt+1At+1μt+1 − μ′
t+1 · at+1 − a′t+1 · μt+1 + (μt+1 − μ0)

′ A0 (μt+1 − μ0)

Sβ
t+1 = Sβ

t + β2
t

mβ
t+1 = mβ

t + βt · βt+1
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Bt+1 = Bt + β2
t+1

gt+1 = gt + 1

Gt+1 = G0 +Bt+1 +
(
μβ
t+1

)2

Sβ
t+1 −

(
μβ
t+1 ·mβ

t+1

)2

+
(
μβ
t+1 − μβ

0

)2

Sβ
0 ,

where W0 = 0, B0 = 0, Zt = [ 1 xt
]′, and Yt = [ rt − βtxt−1 xt

]′.

C. SV Model

Rewrite the SV model with log-stochastic volatility, with an innocuous change of vari-

ables for the volatility process for convenience:

rt+1 = α+ βxt + exp
(
V r
t+1/2

)
εrt+1 (IA.8)

xt+1 = αx + βxxt + exp
(
V x
t+1/2

)
εxt+1, (IA.9)

V r
t+1 = αr + βrV

r
t + σrη

r
t+1 (IA.10)

V x
t+1 = αv + βvV

x
t + σvη

v
t+1. (IA.11)

This model contains two latent state variables: the volatilities of returns and payout yields,

Lt = (V r
t , V

x
t ). The innovations in volatilities are independent of each other and to the

shocks to returns and payout yields.

First, we propagate the volatility states,

V r
t+1 ∼ N (

αr + βrV
r
t , σ

2
r

)

V x
t+1 ∼ N (

αv + βvV
x
t , σ

2
v

)
.

39



Next, we resample particles using weights

w(Lt+1, st, θ) ∝ p (yt+1|yt, Lt+1, st, θ) = N

⎛
⎜⎝
⎡
⎢⎣ α + βxt

αx + βxxt

⎤
⎥⎦ ,Σt+1

⎞
⎟⎠ ,

with

Σt+1 =

⎡
⎢⎣ exp(V r

t+1) ρ exp(V r
t+1/2 + V x

t+1/2)

ρ exp(V r
t+1/2 + V x

t+1/2) exp(V x
t+1)

⎤
⎥⎦ .

The parameters, θ = (α, β, αx, βx, αr, βr, σr, αv, βv, σv, ρ), are drawn from standard lin-

ear regression posteriors with the exception of the correlation coefficient, ρ,

p (α, β, αx, βx|st+1) ∼ N (
vec(μt+1), A

−1
t+1

)

p
(
σ2
r |st+1

) ∼ IG (ct+1, Ct+1)

p
(
αr, βr|σ2

r , st+1

) ∼ N
(
μr
t+1, σ

2
r

(
Sr
t+1

)−1
)

p
(
σ2
v |st+1

) ∼ IG (dt+1, Dt+1)

p
(
αv, βv|σ2

v , st+1

) ∼ N
(
μv
t+1, σ

2
v

(
Sv
t+1

)−1
)
,

where μt+1 = A−1
t+1at+1, μ

r
t+1 =

(
Sr
t+1

)−1
mr

t+1, and μv
t+1 =

(
Sv
t+1

)−1
mv

t+1.

The vector of sufficient statistics, st+1, is updated using the recursions:

At+1 = At + Z ′
tΣ

−1
t+1Zt

at+1 = at + Z ′
tΣ

−1
t+1yt+1

Sr
t+1 = Sr

t +RtR
′
t

mr
t+1 = mr

t +Rt · V r
t+1

W r
t+1 = W r

t +
(
V r
t+1

)2
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ct+1 = ct + 1

Ct+1 = C0 +W r
t+1 + μr

t+1
′ Sr

t+1μ
r
t+1 − 2 μr

t+1
′ ·mr

t+1 +
(
μr
t+1 − μr

0

)′
Sr
0

(
μr
t+1 − μr

0

)

Sv
t+1 = Sv

t +XtX
′
t

mv
t+1 = mv

t +Xt · V x
t+1

W v
t+1 = W v

t +
(
V x
t+1

)2

dt+1 = dt + 1

Dt+1 = D0 +W v
t+1 + μv

t+1
′ Sv

t+1μ
v
t+1 − 2 μv

t+1
′ ·mv

t+1 +
(
μv
t+1 − μv

0

)′
Sv
0

(
μv
t+1 − μv

0

)
,

where W r
0 = 0, W v

0 = 0, and Zt = J ⊗ [ 1 xt
], J is the two-dimensional identity matrix,

Rt = [ 1 V r
t

]′, and Xt = [ 1 V x
t

]′.

The correlation between the residuals of the return and payout regressions, ρ, is esti-

mated from a grid. The probability of drawing a particular ρ is proportional to

∣∣∣∣∣∣∣
1 ρ

ρ 1

∣∣∣∣∣∣∣

−t/2

· exp
(
−1/2(S

(11)
t+1 + S

(22)
t+1 − 2ρS

(12)
t+1 )/(1− ρ2)

)
,

where

St+1 = St +

⎡
⎢⎣ εrt+1

εxt+1

⎤
⎥⎦ [ εrt+1 εxt+1

].
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D. SV-DC Model

The SV-DC model has both stochastic volatility and a drifting predictability coefficient,

rt+1 = α + βxt + βt+1xt + exp
(
V r
t+1/2

)
εrt+1 (IA.12)

xt+1 = αx + βxxt + exp
(
V x
t+1/2

)
εxt+1, (IA.13)

V r
t+1 = αr + βrV

r
t + σrη

r
t+1 (IA.14)

V x
t+1 = αv + βvV

x
t + σvη

v
t+1 (IA.15)

βt+1 = βββt + σβε
β
t+1. (IA.16)

The model contains three latent state variables: the volatilities of returns and payout yields

and the drifting coefficient, Lt = (V r
t , V

x
t , βt).

The particle filter for this model combines the filter for the SV and CV-DC models.

We propagate the volatilities as in the SV model. The resampling weights and drifting

coefficient are calculated as in the CV-DC model, replacing Σ by Σt+1 as defined above.

The sufficient statistics and posterior parameter distributions are the same as in the SV

model, using Yt = [ rt − βtxt−1 xt
]′. The sufficient statistics for the drifting coefficient

are as shown in the CV-DC model.

To summarize the particle filter algorithm, first we propagate the volatility states

⎛
⎜⎝
⎡
⎢⎣ V r

t+1

V x
t+1

⎤
⎥⎦
⎞
⎟⎠

(i)

∼ p

⎛
⎜⎝
⎡
⎢⎣ V r

t+1

V x
t+1

⎤
⎥⎦ |L(i)

t , θ(i), yt+1

⎞
⎟⎠ .

Second, we resample the particles (Lt+1, st, θ)
(i) with weights w(Lt+1, st, θ). Third, we up-

date β
(i)
t+1 ∼ p(β|(yt+1, L

(i)
t , θ(i)). Fourth, we update sufficient statistics s

(i)
t+1 = S

(
s
(i)
t , L

(i)
t+1, yt+1

)
,

and in the last step we draw θ(i) ∼ p
(
θ|s(i)t+1

)
.
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VI. Savage Density Ratios

If we partition the parameter vector as θ = (θM, θ−M), then we are interested in the

models given by M0 : θ−M = 0 and M1 : θ−M �= 0. Here nesting means that the priors

over the unrestricted parameters are the same across the two models,

p (θM|M0) = p (θM|θ−M = 0,M1) ,

and that the likelihoods of the observed data are equal,

p (yt|θM,M0) = p (yt|θM, θ−M = 0,M1) .

These are formal definitions of ”nesting.” The main result is that the Bayes factor, BF0,1,

equals

BF t
0,1 =

p (θ−M = 0|yt,M1)

p (θ−M = 0|M1)
.

To see this, note that by Bayes rule

p (θ−M = 0|yt,M1)

p (θ−M = 0|M1)
=

p (yt|θ−M = 0,M1)

p (yt|M1)

=

∫
p (yt|θM, θ−M = 0,M1) p (θM|θ−M = 0,M1) dθM

p (yt|M1)

=

∫
p (yt|θM,M0) p (θM|M0) dθM

p (yt|M1)

=
p (yt|M0)

p (yt|M1)
= BF t

0,1.

This takes the convenient form of a ratio of ordinates, both computed under the more gen-

eral model. The denominator is just an ordinate of the prior distribution, p (θ−M = 0|M1).

The numerator is

p
(
θ−M = 0|yt,M1

)
=

∫
p (θ−M = 0|θM, st) p

(
θM, sMt |yt) d (θM, sMt

)
,
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which is in the familiar ”Rao-Blackwellization” form common for efficient Monte Carlo in

MCMC settings. The estimate is given by

pN
(
θ−M = 0|yt,M1

)
=

1

N

N∑
k=1

p
(
θ−M = 0| (θM, sMt

)k)
,

where (θM, st)
k are samples from pN

(
xt, s

Mi
t , θMi

|Mi, y
t
)
.
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