
Chapter 1

Mean Variance Portfolio Theory

This book is about portfolio construction and risk analysis in the real-world
context where optimization is done with constraints and penalties specified by
the portfolio manager or fund mandate. Consequently all useful portfolio op-
timization requires the use of numerical optimization methods. In addition to
treating constraints and penalties, modern methods of portfolio optimization
included in this book move beyond the classic portfolio mean-variance opti-
mization (MVO) theory introduced by Markowitz (1952, 1959) to deal with
non-normality of returns using down-side risk measures. None-the-less the
MVO theory is well-established, both in academic courses on portfolio opti-
mization where it provides the foundation for the capital asset pricing model
(CAPM), and as the basis of commercial portfolio optimization products.
Furthermore MVO portfolios form ”ideal” reference points for constrained
MVO portfolios, and constrained MVO portfolios form a reference point for
constrained mean versus downside risk optimal portfolios. Thus this chapter
is devoted to providing a brief treatment of the the MVO theory in several
important contexts.

The basic MVO theory makes the highly idealized assumption that there is
no constraint on short-selling and that only simple linear equality constraints
on weights are imposed. The latter include for example the full-investment
constraint that the portfolio weights sum to one, and a dollar-neutral con-
straint that the portfolio weights sum to zero. With these assumptions an-
alytic formulas for optimal portfolio weights, mean return and variance are
obtainable using the method of Lagrange multipliers. We cover two main ap-
plication contexts: (1) Absolute returns portfolios, i.e., no benchmark relative
concerns, and (2) Benchmark relative (active) portfolios. Case (1) contains
two important sub-cases: (1a) The investment universe is taken to be a com-
bination of cash and risky assets, where cash is taken to mean investment
in a risk-free asset such as 90 day T-bills in the U.S., and (1b) The invest-
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2 1 Mean Variance Portfolio Theory

ment universe consists of only risky assets. Case (1a) contains dollar neutral
portfolios and market neutral portfolios as special cases.

In each of the two main cases above, the optimization problems them-
selves are treated in two equivalent ways: (a) Minimization of risk subject
to achieving a target portfolio mean return (or its infrequently treated dual
consisting of maximizing mean return subject to a constraint on risk), and
(b) Maximization of a quadratic utility function. The former is a traditional
academic way of treating the problem, and the latter is the more common
viewpoint taken in commercial portfolio optimization and risk management
software products. We describe both approaches in this chapter.

1.1 Portfolio Mean and Variance

This section provides definitions and notation that will be used extensively
throughout the book. The basic context is that you have a portfolio of n
assets with returns rti, i = 1,2, · · · ,n, t = 1,2, · · · ,T , and portfolio weights wi, i =
1,2, · · · ,n. The latter are assumed to be constant for the time interval t =
1,2, · · · ,T . The portfolio weight wi represents the fraction of total wealth V
invested in asset i, i.e., the wealth invested in asset i is V wi. Unless otherwise
noted the returns are assumed to be arithmetic, i.e., rti = (pt,i− pt−1,i)/pt−1,i =
pt,i/pt−1,i−1. In vector notation the asset returns are

rt = (rt1, ...,rtn)′, t = 1, ...,T (1.1)

and the portfolio weights are

w = (w1,w2, · · · ,wn)′. (1.2)

The portfolio return at time t is

rP,t = ∑
n
i=1 wirti = w′rt (1.3)

and we often drop the subscript t and write rP = w′r.
The key quantities in portfolio MVO are the portfolio mean return

µP = E(rP) (1.4)

and the portfolio variance

σ
2
P = var(rP) = E(rP−µP)2. (1.5)

The key expressions we need are those for the portfolio mean and variance
in terms of the asset mean returns and covariances. The notation for asset
mean returns is
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µµµ = E(rt)
= (E(rt1),E(rt2), · · · ,E(rtn))′

= (µ1,µ2, · · · ,µn)′
(1.6)

where we have assumed that the means do not vary with time. The pairwise
covariances of the asset returns are

Σi j = E [(rti−µi)(rt j−µ j)] , i, j = 1, · · · ,n
= E(rtirt j)−µiµ j

(1.7)

where we have also assumed that the covariances do not change over time,
and the n×ncovariance matrix of the asset returns is

ΣΣΣ = E [(rt −µµµ)(rt −µµµ)′]
= E(rtr′t)−µµµµµµ ′′′.

(1.8)

The pairwise correlations are given by

ρi j =
cov(ri,r j)

var1/2(ri) ·var1/2(r j)
, i, j = 1, · · · ,n

=
cov(ri,r j)

σi ·σ j

=
Σi j

Σ
1/2
ii ·Σ

1/2
j j

(1.9)

and the n×n correlation matrix is

R = diag(σ
−1
i ) ·Σ ·diag(σ

−1
i ). (1.10)

With the above notation the portfolio mean return is

µP = E (rP)
= E(w′r)
= w′E(r)
= w′µ

(1.11)

and the portfolio variance is

σ2
P = var(rP)

= var(w′r)

= E(w′ (r−µ))2

= E(w′ (r−µ)(r−µ)′w)
= w′Σw

(1.12)

When we use the term volatility of an asset we are referring to the standard
deviation of the asset’s returns. So the volatility of a portfolio is

σP =
(
w′Σw

)1/2
. (1.13)
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We note that the portfolio variance expression is a quadratic form in the
portfolio weights. Unless noted otherwise we assume that the covariance ma-
trix of asset returns is positive definite, which means that the portfolio vari-
ance and volatility are positive for any non-zero weight vector w. It also means
that Σ is non-singular and has an inverse Σ−1 which is positive definite and
non-singular. For details see APPENDIX A. We shall encounter the use of
Σ−1 frequently.

1.2 Global Minimum Variance Portfolios

The global minimum variance (GMV) portfolio is a special case of mini-
mum variance portfolios that contain only risky assets and satisfy the full-
investment constraint that the portfolio weights sum to one, but there is no
other constraint and in particular no limit on short sales. We begin by deriv-
ing the analytic formula for a GMV portfolio for two reasons. One the one
hand the derivation illustrates the simplest use of the method of Lagrange
multipliers to obtain an analytic solution. On the other hand GMV portfo-
lios, possibly with diversification inducing weights constraints, are of interest
as index alternatives to market capitalization weighted indexes.

Let 1 = (1,1, · · · ,1)′ be the unit vector of n ones. The GMV portfolio weight
vector is the solution of:

min
w

σ
2
P(w) = min

w
w′Σw

subject to
w′1 = 1.

The Lagrangian for this minimization problem is

L(w) =
1
2

w′Σw + λ
(
1−w′1

)
(1.14)

and setting the derivative of the Lagrangian equal to zero gives

Σw−λ1 = 0.

which gives the form of the optimal weight vector in terms of the unknown
Lagrange multiplier:

w = λ
−1

Σ
−11.

Solving the constraint equation for the Lagrange multiplier gives λ = (1′Σ−11)−1

and so

wGMV =
Σ−11

1′Σ−11
. (1.15)

Using the general expression (1.11) for portfolio mean return gives
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µGMV = w′GMV µ

=
1′Σ−1µ

1′Σ−11
(1.16)

and using the general expression (1.12) for portfolio variance gives

σ2
GMV = w′GMV ΣwGMV

= (1′Σ−11)−1.
(1.17)

Correspondingly the volatility of the GMV portfolio is

σGMV = (1′Σ−11)−1/2. (1.18)

Note that the denominator of the expression (1.16) is a quadratic form
based on the positive definite matrix Σ−1 and so it is always positive. However,
this is not the case for the numerator which is a linear form and in general
can be positive or negative. Thus the mean return of the global minimum
variance portfolio will be positive if and only if 1′Σ−1µ > 0.

Recent years has seen interest in using GMV portfolios, calculated numer-
ically with weights constraints as we discuss in the next chapter, as index al-
ternatives to market capitalization indexes. For example Clarke et. al. (2006)
show that such a portfolio can outperform a cap-weighted market index. Their
empirical study is based on the following conditions:

� Monthly portfolio rebalancing 1968 through 2004 (456 months)
� Training window is one year of trailing daily excess returns
� 1,000 largest market cap stocks for each rebalance period
� Shrink 1,000 x 1,000 covariance matrix toward two-parameter covariance

matrix (Ledoit and Wolf, 2004)
� Market is the cap-weighted portfolio of the 1,000 stocks
� GMV portfolio is long-only with upper bound of 3% on weights

Their results include the following where the mean returns are in excess of
the T-bill rate which averaged 5.95%:

Portfolio Mean Return Volatility Sharpe Ratio

Market 5.6% 15.4% .36
GMV 6.5% 11.7% .55

Other related references include:

� Scherer, B. (2011). A New Look at Minimum Variance Investing. Journal
of Empirical Finance.

� Clarke, de Silva and Thorley, S. (2011). Minimum-Variance Portfolio Com-
position, Jour. of Portfolio Management, Fall, 37, No. 2, 10-24.

� Haugen, and Baker, N. (1991). The Efficient Market Inefficiency of Capital-
ization Weighted Stock Portfolios, Jour. of Portfolio Management, Spring,
35-40.
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1.3 MVO Portfolios with Cash and Risky Assets

We now show how to obtain a minimum variance portfolio that contains both
cash and risky assets subject to just two constraints, a mean-return constraint
and the full-investment constraint. Once we have the optimal weights it is
straightforward to obtain the mean return and variance of such a portfolio.
What is perhaps surprising and important is that the relationship between
the portfolio mean excess return and volatility is linear. There are two ways
to solve this problem:

MinVar Minimize portfolio variance for specified mean return
QU Maximize quadratic utility for specified risk aversion

Both methods yield the same linear relationship between the optimal port-
folio mean return and volatility. Since the QU approach is quite familiar to
practitioners we derive the optimal weights that way, and leave the MinVar
method to Problem xx.

Let w0 represent the fraction of wealth invested in cash, i.e., invested in
a risk-free asset with risk-free rate r f , and let ∑

n
i=1 wi = w′1 represent the

fraction of wealth invested in risky assets (stocks, bonds, ETF’s, etc.). Note
that the portfolio mean return is then µP(w) = w0r f +w′µ. Thus the problem
is to maximize the quadratic utility

Q(w) = µP(w)− 1
2 λσ2

P(w)
= w0r f + w′µ− 1

2 λw′Σw (1.19)

where λ > 0 is a risk aversion parameter, subject to the constraint

w0 + w′1 = 1. (1.20)

The above problem places no limit on short selling. Since the asset mean
excess returns are µe = µ−1r f , we see that

µP(w) = w0r f + w′µ
= w0r f + w′(µe + 1r f )
= w0r f + w′1r f + w′µe
= r f + w′µe.

(1.21)

Thus we need to maximize

r f + w′µe−
1
2

λw′Σw (1.22)

subject to the constraint (1.20), and since r f is fixed it can be omitted from
the objective. Problem 1.1 shows that the solution is
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wopt = λ
−1

Σ
−1

µe (1.23a)

w0 = 1−w′opt1. (1.23b)

We see that as risk aversion λ → ∞ the portfolio consists of an all cash posi-
tion, and as risk aversion λ → 0 the portfolio weights become unbounded in
absolute value. Note that λ−1 is a risk tolerance parameter. As risk tolerance
goes to zero the portfolio consists of an all cash position, and as risk-tolerance
goes to infinity the portfolio weights become unbounded. In Problem 1.2 you
explore what happens to the cash position in the latter case.

It is useful to express the optimal weights of the risky assets in terms of
the portfolio mean excess returns µP,e as follows. From (1.21) it follows that

µP,e = µP(w)− r f
= w′opt µe
= λ−1µ ′eΣ−1µe

(1.24)

is positive, and substituting the resulting expression for λ−1 into (1.23a) gives

wopt =
Σ−1µe

µeΣ−1µe
·µP,e. (1.25)

The variance of the optimal portfolio is

σ2
opt = w′optΣwopt

=
1

µ ′eΣ−1µe
·µ2

P,e
(1.26)

and since µP,e > 0 the portfolio mean excess return and volatility are linearly
related:

µP,e =
√

µ ′eΣ−1µe ·σopt . (1.27)

We state the above result in slightly different form as theorem.

Theorem 1.1. Quadratic utility optimal portfolios that contain cash and
risky asset have the following mean return versus volatility relationship:

µP = r f +
√

µ ′eΣ−1µe ·σP. (1.28)

Sharpe Ratio and Risk Aversion Parameter

The Sharpe ratio of any portfolio P is defined as the ratio of the portfolio
mean excess return to the portfolio standard deviation:

SRP
∆
=

µP,e

σP
.



8 1 Mean Variance Portfolio Theory

From (1.28) we see that the Sharpe ratio is constant along the efficient frontier
with values given by

SRopt =
µopt,e

σopt
=
√

µµµ ′′′eΣ−1µe (1.29)

The following code makes use of the functions barplot.wts.R and math-

EfrontCashRisky.R to generate Figures 1.1, 1.2 and 1.3:

> library(xts)

> load("Computing/crsp.short.Rdata")

> source("Computing/mathEfrontCashRisky.R")

> source("Computing/barplot.wts.R")

> returns = midcap.ts[,1:10]

> plot.zoo(returns,plot.type = "multiple",main = "MID-CAP RETURNS")

> mathEfrontCashRisky(returns, scalex = 1.2, scaley = 2, bar.ylim = c(-1.5,3.5))

$MU.EQ.WT

[1] 0.01616507

$STDEV.EQ.WT

[1] 0.06004073

$SR.EQ.WT

[1] 0.2692351

$SR.EFRONT

[1] 0.3608565

The code computes the mean return, volatility and Sharpe ratio of an
equally weighted portfolio, and the efficient frontier optimal Sharpe ratio
given by (1.29). Figure 1.2 shows the position of the equally-weighted port-
folio with the triangle symbol.

As for the risk aversion parameter note that equation (1.24) gives

λ =
µ ′eΣ−1µe

µP,e

and (1.26) gives

µ
′
eΣ
−1

µe =
µ2

opt,e

σ2
opt

.

Noting the expression for the optimal Sharpe ratio in (1.29) gives the following
general expression for the risk aversion parameter along the efficient frontier:

λ =
µopt,e

σ2
opt

=
1

σopt
SRopt (1.30)
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Fig. 1.1 Mid-Cap Stock Returns 1997-2002

You can plot the efficient frontier versus risk tolerance with the following
code:

> library(xts)

> load("Computing/crsp.short.Rdata")

> source("Computing/mathEfrontCashRisky.R")

> source("Computing/barplot.wts.R")

> returns = midcap.ts[,1:10]

> mathEfrontCashRisky(returns, scalex = 1.2, scaley = 2, risk.tol = T, wts.plot = F)

There remains an interesting question. The efficient frontier was derived
with the assumption that there is a mix of cash and risky assets. One might
think that as a limiting case this efficient frontier should contain a position
that is totally in risky assets. In order for that to be the case the condition
1′wopt = 1 must hold, which implies that

1′wopt = λ
−11′ΣΣΣ−1

µµµe = 1.
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Fig. 1.2 Efficient Frontier with Cash and Risky Assets

Recalling that the risk aversion parameter λ is non-negative, we see that in
order to have a full investment in risky assets position on the efficient frontier
it must be that

λ = 1′ΣΣΣ−1
µµµe > 0. (1.31)

For the mid-cap returns efficient frontier of 1.4 the resulting risk aversion
parameter λ turns out the be positive as the following computation shows:

> library(xts)

> load("Computing/crsp.short.Rdata")

> rf = .005

> returns = midcap.ts[,1:10]

> C = var(returns)

> mu.stocks = apply(returns, 2, mean)

> mue = mu.stocks - rf

> a = solve(C, mue)

> lambda = sum(a)

> lambda # Risk aversion value
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Fig. 1.3 Efficient Frontier with Cash and Risky Assets

[1] 4.287556

> 1/lambda # Risk tolerance value

[1] 0.2332331

But the condition 1′ΣΣΣ−1
µµµe > 0 does not always hold. One wonders what

simple condition, if any, would imply this condition. This question turns out
to have a simple answer. Recalling the expression (1.16) for the mean return of
the GMV portfolio, we see that the mean excess return of the GMV portfolio
is:

µGMV,e =
1′ΣΣΣ−1

µµµ

1′ΣΣΣ−11
− r f

=
1′ΣΣΣ−1

µµµ

1′ΣΣΣ−11
−

1′ΣΣΣ−11 · r f

1′ΣΣΣ−11
=

1′ΣΣΣ−1
µµµe

1′ΣΣΣ−11
.

(1.32)



12 1 Mean Variance Portfolio Theory

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Risk Tolerance

P
or

tfo
lio

 M
ea

n 
R

et
ur

n
Risk−Free = 0.005

EQ.WTS

Fig. 1.4 Cash and Risky Assets Efficient Frontier versus Risk Tolerance

The condition for the mean excess return of the GMV portfolio to be positive
is the same as the condition (1.31). In summary: A full investment in risky
assets position exists on the efficient frontier for cash and risky assets if,
and only if, the mean excess return of the GMV portfolio is positive. It is
important to know that in practice the latter condition is not always satisfied.
** ADD HISTORICAL DATA EXAMPLE HERE, E.G., IN THE HIGH

INTEREST RATE PERIOD OF THE 70’S WE CAN LIKELY FIND SUCH
CONDITIONS ARE FREQUENT **

** ADD GENERAL SIMPLE EXPRESSION FOR RISK TOLERANCE
ALONG EFFICIENT FRONTIER **
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1.4 MVO Portfolios with Risky Assets Only

1.5 Dollar Neutral and Market Neutral Portfolios

1.6 Benchmark Relative Optimization

1.7 Benchmark Relative Optimization

1.8 Liabilities and Surplus Efficient Frontier

1.9 Estimation Error and Portfolio Uncertainty

Problems

1.1. Use the method of Lagrange multipliers to show that maximization of
(1.22) subject to the constraint (1.20) yields the expressions in (1.23a) and
(1.23b).

1.2. Explain what happens to w0 in (1.23b) as λ → 0 in (1.23).

1.3. Formulate the problem of finding the mean-variance optimal portfolio
of cash plus risky assets as one of minimizing the portfolio variance for a
specified portfolio mean excess return. Solve for the optimal weight vector
using the method of Lagrange multipliers, and confirm that the result is
identical to equation (1.23a) obtained by maximizing quadratic utility.


