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4. ACTIVE PORTFOLIO MANAGEMENT
4.1  Basic Concepts and Terms 
4.2  MV Active Portfolios
4.3  Value Added Active Management
4.4 Fundamental Law of Active Management 
4.5  Numerical Active Optimization with Constraints
4A.1 Minimum MSE Prediction
4A.2 Minimum TEV Portfolios

Reading in Chincarini and Kim (C&K): 
Chap. 1 (optional)
Chap. 2: Focus mainly on Sections 2.5 and 2.6 but do read the other sections
Chap. 9: Sections 9.8.1 and 9.8.4 (we will return to 9.8.2 and 9.8.3 later)
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4.1  Basic Concepts and Terms
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Example
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Benchmark weights:

Portfolio weights (active manager):

Active weights:
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Expected active returns:

Active Portfolios
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Alternatively:
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Alphas and Residual Returns
To better understand stock alphas, assume that for a benchmark B (that 
could be a market proxy) assume that portfolio returns are adequately 
modeled by a linear single factor model (SFM) without intercept:

Alternative representations :                                   

Either way:

The active portfolio manager wants to maximize:

2
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r r




 P P P P BE r     
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( )                 P P B PEr r      where 

( )         0P P P B Er r      where
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Residuals are Uncorrelated with BM Returns

It turns out that the residuals are uncorrelated with the benchmark 
returns:

This important property follows from the fact that                                .

Proof:  Easy exercise.

NOTE:  There is an important connection between “betas” of the above form 
and minimum mean-squared-error  (MSE) prediction of one random variable 
with another random variable.  For details see appendix 4A.1.
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Active Beta

The active beta is computed as the beta of the active portfolio 
with respect to the benchmark:
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With the SFM the mean and variance of the active returns are:

,          ( ) 0
,                  1
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Active Returns with Single Factor Model
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Active risk (TE):  A

Residual risk:  P

These are the same only when            ,
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 Performance of portfolio manager is monitored with TEV (low = good)

 TEV is minimized w.r.t. to          by the choice     

 Active managers like               but often choose             in order to get 
larger returns

 Managers will be ranked by their information ratios, to be defined 
next

0   A   1P 

1 P

Active Managers Performance

A

1P 
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The Information Ratio
The most important performance measure of an active (benchmark 
tracking) portfolio manager is the Information Ratio:

Goal of a portfolio manager is to maximize the information ratio.

Example (Grinold, Kahn, p.113): 

A new manager:

How good is her IR?

Compare to others: % Tile 90 75 50 25 10
IR 1.0 0.5 0         -0.5       -1.0

( )P A

A A

E rIR 
 

 

3.5%,  5.5% 0.64%. 


    P
P A

A

IR

hire fire
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Appraisal Ratio versus IR
The term Appraisal Ratio is used to define a quantity very similar to 
the IR, namely:

( )
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2 var( )
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Where                                  is the variance of the SFM residuals, and

So we have                 if and only if the active beta is zero, equivalently 
the portfolio beta is one.

Since actively managed long-only portfolios often have a beta close to 
one there often is little difference between the appraisal ratio and IR.

P PA IR
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The IR Estimate as Scaled t-Statistic
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Level     t-test that mean of active returns is greater or equal to      :

1/2
0 1ˆ (1 )A A Tr T t  

   

For                        random variables the t-statistic has a t-distribution 
with n-1 degrees of freedom (dof).   So with that assumption about 
returns and with                the                    of a t-distribution with T-1
d.o.f.,  we have the following.  

2( , )NIID  

0

1( )Tt  - quantile

If                                                    reject null hypothesis that             , 

else accept the alternative hypothesis that            .  Note that for 

,  the test rejects and decides that IR is positive if:

0 

0 

0 0 


1(1 )TT IR t   

Important point: Test may not be very reliable if the returns have a 
fat-tailed and/or skewed non-normal distribution, or if there is serial 
correlation!
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Two approaches:

1. Quadratic utility (QU) maximization
 Will discuss this one next
 It is useful for not only active portfolio management but also for 

hedge fund long-short zero investment portfolios

2. Minimize TEV
 Roll (1992)
 Jorion (2003)
 Bertrand (2012)

These are mathematically tedious but they provide guidance on how to think 
about the performance of active management, and intuition on what to do 
when minimizing TEV with constraints that require numerical optimization.  
Details are provided in appendix 4A.2

4.2 MV Optimal Active Portfolios
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Maximum QU Active Portfolio

NOTE 1:  The weights are independent of the benchmark weights!
This provides a basis for “portable alpha” .

NOTE 2:   The above expression is the same as the second term in the two-
fund separation theorem of LSS-1 appendix 1A.1.

1
2A A A w μ w ΣwMaximize subject to: 0A w 1

1 1 1 1
1

, 1

( ) ( )
A opt 

   




 



1 Σ 1 Σ μ 1 Σ μ Σ 1w

1 Σ 1
Result:

QHS 2.2.4:  Uses           where we use              . ,  Aw μ,  a f

N.B. This formulation applies not only to active portfolios but also to any 
dollar neutral portfolio, e.g., a hedge fund long dollar neutral portfolio.
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Warning about notation in QHS

They use                      which is a random variable not a fixed 

unknown parameter.  And this tendency persists throughout the 

book, often causing confusion about what are the parameters to 

be estimated and what are the data

A  w r
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Equivalent Representation

1 1
, ( )A opt l  w Σ μ 1

1

1l








1 Σ f
1 Σ 1

Note that without the term involving l we have the standard non-active 
MVO weight vector expression.   So what is the role of  l aside from 
insuring that the active weights sum to one?   Consider the following 
single factor model:

,     ( , )  μ 1 v v 0 Σ

The GLS estimate of      is:
1

1ˆGLS l







1Σ μ
1Σ 1

So the adjustment is to remove the BLUE for a model in which all 
asset mean returns are the same.



6/5/2013 Copyright R. Douglas Martin 20

Optimal Active Mean Return, TE and IR
1 1 1 2
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
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  



  
 


1 Σ 1 f Σ f 1 Σ f

1 Σ 1

Take the ratio of the above to get the maximized information ratio;

,    A opt opt  in QHH (somewhat an abuse of term" alpha")NOTE: 
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Two Types of Efficient Frontiers
We see that the “efficient frontier” for the active portfolio is a 
straight line with slope equal to the information ratio, as the 
efficient frontier for full investment in risky assets is hyperbolic.  
The following two slides compare the two efficient frontiers with 
the following simple example of mean returns, volatilities and 
correlation matrix (see QHH, pp. 33-37):

(10%,0%,10%) μ

(30%,30%,30%) σ

1 .5 .5
.5 1 .5
.5 .5 1

 
   
 
 

corr
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Two efronts for previous means & covariances
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The two efronts for 10% higher mean returns
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4.3  Value Added Active Management
Expected excess (rate of) return on asset i :   1   i i fE R r

The risk premium:  Very long-term benchmark returns, 
e.g., 70+ years (??).  3% - 7% for most equity markets.

   
    

  

     
i i B i

i B i B i

Exceptional excess return

Stock selection:  Manager skill in picking stocks.

 i B

Benchmark timing:  Difference between expected 
benchmark return in the near future and in the long-term. 
Long term average expected value of          is 0.

  i B

i

 B

B
Benchmark
mean return

gross return



6/5/2013 Copyright R. Douglas Martin 25

Follows Grinold and Kahn (2000).  We have the usual representation 

P P B Pr r  

( 1) .P P B P PA B P          

 B

          P B PA B PA B P

,    B B B

Bwhere       is the long-term average (consensus return) and          is the
“local” variation of benchmark mean (benchmark timing), to get:

The portfolio expected (excess) returns are

We substitute

Portfolio Mean Returns Decomposition



6/5/2013 Copyright R. Douglas Martin 26

          P B PA B PA B P

Actual benchmark 
expected excess 
return

Return due to active 
management and 
consensus return

Return due to active 
management and 
benchmark timing

Return due to stock 
alphas and stock 
selection

Portfolio Mean Returns Decomposition
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Portfolio Variance Decomposition

2 2 2 2

2 2 2 2 2

(1 )

2
P PA B

B PA B PA B





   

     

  

   

Actual 
benchmark 
variance

Covariance due to 
active betas

Variance due to 
active betas

Variance 
due to stock 
selection
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Now express quadratic utility for the portfolio P in terms of the 
previous quantities, and generalize the risk aversion by using 
different risk aversions for different components below:

 

2 2

2

2

2

( 2 )

( )

P T P B T B

PA B T B

PA B BT PA B

P R 

     

   

    

  

  

 

  

 

Forecast, no action

Curious small term

Forecast + action

Forecast + action
Value added

Can’t change

 2 2( )PA B BT PA B P RVA            Value added:

Focus on this!Requires exceptional benchmark timing
and active beta

Ignore



4.4  Fundamental Law of Active Mgm’t.
A well-known “law” whose proofs are involved and often confusing, and whose 
usefulness is somewhat questionable.  None-the-less we need to know 
something about.  The basic idea is due to Richard Grinold and rationalized 
and extended by others.  See the book by Grinold and Kahn (2000) and the 
some of the many papers:

 Clarke, R., Silva, H. and Thorley, S. (2002). “Portfolio Constraints and the 
Fundamental Law of Active Management.” Financial Analysts Journal, vol. 
58, no. 5 (September/October):48–66.

 Clarke, R., de Silva, H. and Thorley, S. (2006). “The Fundamental Law of 
Active Management.” Journal of Investment Management, vol. 4, no. 3: 54–
72.

 Grinold, R. C. (1989). “The Fundamental Law of Active Management.” The 
Journal of Portfolio Management, vol. 15, no. 3 (Spring): 30–38.

 Grinold, R. C. (1994). “Alpha is Volatility Times IC times Score.” The 
Journal of Portfolio Management, vol. 20, no. 4 (Summer): 9–16.
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 Qian, E, and Hua, R. “Active Risk and Information Ratio.” The Journal of 
nvestment Management, vol 2, no. 3 (2004), pp. 20-34.

 Qian, E., Hua, R., and Sorensen, E.H. (2007). Quantitative Equity Portfolio 
Management: Modern Techniques and Applications, London: CRC Press.

 Sorensen, E. H., Hua, R., Qian, E. and Schoen, R. (2004). “Multiple Alpha 
Sources and Active Management.” The Journal of Portfolio Management, 
vol. 30, no. 2 pp. 39-45.

 And other references to be added ……..
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The Initial Grinold Version (1989)

IR BR IC 

The “information coefficient” IC is defined as the sample cross-
section correlation coefficient between a forecast of returns and 
the returns them selves.  As such is interpreted as a measures 
of skill of the portfolio manager.  Then assuming a quadratic 
utility portfolio optimization with unconstrained weights except 
for full investment, Grinold derives the following fundamental 
law of active management (FLAM) formula for the information 
ratio

where         is defined as the number of independent forecast of 
exceptional return the manager makes (per year).  If there are N
assets in the portfolio and an independent forecast is made for 
each return then the formula becomes

BR

IR N IC 
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Qian et. al. 2007 Extension

( )
( )

E ICIR
IC



In a more thorough treatment the above authors use risk adjusted 
forecasts and returns, and taking into account that the as a cross-section 
correlation coefficient the IC is a random variable, derive the following 
version of FLAM:

Since        is a sample correlation coefficient        one can use the 
following result from statistics under normality:

2(1 )ˆ( )
N
  



Since in practice values of        are small, e.g., .1 to .2, applying the above 
approximation to        gives: 

IC ̂

IC
IR

( )IR N E IC 
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Clarke et. al. 2002 Extension

IR N IC TC  

The Grinold original formula is limited by the assumption of no 
constraints in the optimization except full-investment.  This is not 
realistic in practice, so Clarke et. al. (2002) extended the result to 
the case of constrained optimization by introducing the a “transfer 
coefficient” TC defined as the cross-section correlation between 
the weights under a constrained optimization and the forecasts.  
Then the FLAM becomes

Since TC is a correlation coefficient it is bounded above by one 
and can be substantially smaller for constrained optimization.  
Clarke et. al. give some interesting examples of the reduction in 
IR that occurs for various types of constraints.
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Some FLAM Theory Building Blocks
There are many papers on this topic and there does not yet exist a totally 
clear and satisfactory derivation of the FLAM.  None-the-less the next two 
conceptual building blocks that are worth knowing about.

Active Return and Initial Simplistic IC

1 2       (g , , , )      0Nc g g c     w g g w 1 g w

The key intuition is that if a portfolio manager has effective “signals” for 
forecasting asset returns, these signals can be transformed to a specification 
of portfolio weights.   So let’s assume that with      the transformed signal we 
have active weights:

g

Then we can express active returns      as:

1

1 1

1( )               

N
A i ii

N N
i i cs cs ii i

r w r

w r r r r
N



 



  



 

Ar

NOTE:                   in QHS (bad choice!)Ar 
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Now substituting                we have:





1

1

, ,

( )

1 ( )

 cov ( , )

ˆ ˆcorr ( , )

N
A i i csi

N
i i csi

cs

cs g cs r cs

r c g r r

cN g r r
N

cN

cN  





   

  

 

   




g r

g r

cw g

cross-section sample 
std. deviationscross-section sample 

correlation coefficientIC 

, "conviction"  (quality of forecast)ˆg cs 

, "opportunity"  (cross-section volatility)ˆr cs 
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Alpha Equals IC Times Volatility Times Score  (Grinold, 1994)

Appendix 4A.1 shows that among all linear predictors                          of the 
random variable     , the minimum MSE predictor is:

Ŷ a b X  
Y

2
2

cov( , )ˆ ,       ( ),   var( )Y Y X
X

X YY X E Y X  


    

More general result that is fairly easy to prove:  Among all non-linear 
predictors                   of      , the minimum MSE predictor is the conditional 
mean:

ˆ ( )Y h X Y

ˆ ( | )Y E Y X

This conditional mean is in general nonlinear.  However for the special case of 
bivariate normal random variables       and      the conditional mean turns out 
to be linear and is given by the minimum MSE linear predictor above.

Summarizing:   In the case of normality                                                            .  

YX

2

cov( , )ˆ ( | )Y
X

X YY X E Y X


   
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Now let             ,              , with                                          , and consider the 
model:

AY r X g

,        ( | ) 0Ar a b g E g     

Conditional expected value predictor of      given     for the above model :

      A g A ga b a b         

( ),   ( )A A g gE r E r  

Ar g

ˆ ( | )

      ( )

A A

A g

r E r g
a b g

b g 


  
   

Since this is a linear predictor we can plug in the optimal      that yields 
minimum MSE to get:

b

2

cov( , )ˆ ( )A
A A g

g

r gr g 


   
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2

2

,

cov( , )ˆ ( )

cov( , )               var( )

( , )

A A

A
A g

g

gA
A A A

A g g

A A g

r g r g

r gr g

gr g r

r g score

IC volatility score





 

  

 

  


   

  

  

In active portfolio management one assumes that the unconditional mean is 
zero:                 (alpha generation is a zero-sum game).  In that case:0A 

Note that:    0,       var 1g gE score score 

N.B.  In the above expression      is fixed conditioned on      but since
is a random variable that will vary with different market information 

conditions used to construct      is unconditionally a random variable.

Âr g
g

Âr
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Two Methods (as usual, see C&K Sections 9.8.1 and 9.8.4):

 Active MVO (AMVO):  Minimize tracking error subject to portfolio 
mean return constraint and other constraints, or maximize portfolio 
mean return subject to TE constraint and other constraints

 Active Quadratic Utility (AQU)

AMVO Primal Method

4.5 Numerical Active Optimization

6/5/2013

2 var( )                A P B ATEV r r TE     

2 2 22cov( , )A P P B Br r    

So just need to minimize: 2 2cov( , )P P Br r 
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 
 

1

1

,cov( , ) cov ,

           cov ,

N
P B i Bi

N
i i i Bi

P

P i

i

r r w r r

w r r 




 

  





w γ

Thus we minimize TE subject to constraints by minimizing:

2P P P  w Σw w γ

subject to                                        and other constraints (e.g., box, etc.),0 ,0P P B A     w μ

AMVO Dual Method

Maximize           subject to                                      and other constraints. 

Usually don’t take this approach to achieve a desirable TEV, since must 
check for feasibility of       .  Just do primal problem for various       to 
achieve desired TEV .   

w μ 2 2
0( )ATEV   w

2
0 0

portfolio manager determines
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Active Quadratic Utility Maximization Method

( )
2A A AAQU    w w μ w Σw

subject to                and additional constraints on the portfolio 
weights       , such as long-only, box, etc.

        P A B B A B        0 w w w 1 w w 1 w

Example:  Portfolio long-only constraint

6/5/2013

maximize

This works if you have the benchmark weights (can afford the 
data subscription price). But if you don’t have the benchmark 
weights, you can use an equivalent formulation described next.

Pw

At first it may seem natural to formulate the active quadratic utility 
maximization problem as:

0A w 1
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First note that: A P B   w μ w μ w μ

Now recall from the previous slides that:

2 22A P P P B    w Σw w γ

  2( ) 2
2 2A P P P P B BAQU             

 
w w μ w Σw w γ w μ

Thus:

a constant

 cov ,i i Br r where

So subject to constraints we just maximize:

 ( ) 2
2P P P P PAQU      w w μ w Σw w γ

Note carefully that the benchmark weight vector        may have a very large 
dimension, e.g., for the R1000 benchmark it will be a 1,000 dimensional 
vector, as will     .   On the other hand        may have a relatively small 
number of non-zero weights, e.g., 100 to 200.   

Bw

Pwμ
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Collecting the linear terms in                     on the previous slide into a 
single linear term gives the following, which you maximize subject to 
constraints:

 ( )
2P P P PAQU     w w μ γ w Σw

( )PAQU w

As usual when             you are maximizing the portfolio mean return 
subject to the constraints.  But when               you are minimizing

2P P P w Σw w γ

0 
 

Setting the derivative of the above expression equal to zero and 
solving for the optimal weights gives:

1
P

w Σ γ

Let’s examine the structure of     .      γ
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We know that     has elements                                              where
are the asset returns used to calculate the portfolio 

returns     .   However the benchmark returns     are given by

  1, ,cov , ,   i i B i Nr r  γ
,  1, ,ir i N 

Pr Br

, ,1 1,   

N M
B B i i B j ji j j any i

r w r w r
  

  

Where M is a number generally much larger than N.  For example 
an enhanced index portfolio might be constructed with N = 150 and 
M = 1,000.  However, even when we don’t have the weights we can 
still compute an estimates of                                           and       , 
and thereby estimate the tracking error                by estimating the 
tracking error variance: 

  1, ,cov , ,   i i B i Nr r  

Note that when there are many more assets in the benchmark than in 
your portfolio, you can not obtain TE = 0   as             .  However, in 
practice you can obtain very small values of TE with 100-200 assets.       

2 22A P P P BTEV      w Σw w γ

ATE 

2
B

 
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In the very special (and unrealistic) case where the assets in your 
portfolio are the same as the assets in the benchmark, you will get
TE = 0   as             .    To see that this is the case, just note that in this 
special case    

 

1

1
P

B

B










w Σ γ

Σ Σw
w

Bγ Σw

and so as              you have 

and the tracking error will (obviously) be zero.
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AQU R-Code Example
library(xts)
library(quadprog)
load("C:/Doug/AMath Courses/AMATH 543/Data/crsp.short.Rdata")
ret = largecap.ts[,1:20]
p = ncol(ret)
ret.B = ret%*%rep(1/p,p)
#ret.B = largecap.ts[,"market"]

constraints = function(A,b,meq)
{

list(A=A,b=b,meq=meq)
}
# Long-Only Constraints
p = ncol(ret)
A = cbind(rep(1,p), diag(rep(1,p))) # Constraint matrix
b = c(1,rep(0,p))                   # Constraint bound
cset.lo = constraints(A,b,1)

# For back-test use default wts.only = T
# For efficient frontier use wts.only = F
# For  printout of results use digits = 3 or 4
# Active Quadratic Utility Optimal Portfolio
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aqu = function(ret,ret.B,cset=NULL,lambda,wts.only=T,digits = 
NULL)
{

require(quadprog)
V = var(ret)
Vlambda = lambda*var(ret)
g = as.numeric(cov(ret,ret.B))
mu = apply(ret,2,mean)
p = ncol(ret)
d = mu + lambda*g
if(is.null(cset))
{A = cbind(rep(1,p))
b = 1
meq = 1}
else
{A = cset$A
b = cset$b
meq = cset$meq}
port.aqu = solve.QP(Vlambda,d,A,b,meq)
wts = port.aqu$solution # Get optimal weights
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mu = sum(wts*mu)
sigma.sq = as.numeric(t(wts)%*%V%*%wts)
sigma = sqrt(sigma.sq)
wts = as.numeric(wts)
if(!is.null(digits))
{wg = t(wts)%*%g
tev = as.numeric(sigma.sq - 2*wg + var(ret.B))
te = sqrt(tev)
mu.B = mean(ret.B)
sd.B = sqrt(var(as.numeric(ret.B)))
names(wts)= dimnames(ret)[[2]]
out = list(WTS = wts,MU.PORT = mu,SD.PORT = sigma,MU.BM = 

mu.B,SD.BM = sd.B,TE = te)
lapply(out,round,digits)}
else
{if(wts.only) wts else c(mu,sd,wts)}

}

# Test qu.constrained
cset = cset.lo
aqu(ret,ret.B,cset=cset,500,digits = 5)
aqu(ret,ret.B,cset=cset,.01,digits = 3)
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$WTS
AMAT  AMGN  CAT  DD   G    GENZ   GM     HON      KR    LLTC 

0.10154 0.10177 0.10264 0.09617 0.09780 0.10181 0.09777 0.09992 
0.09992 0.10066 

$MU.PORT
[1] 0.01964

$SD.PORT
[1] 0.06497

$MU.BM
[1] 0.01945

$SD.BM
[1] 0.06477

$TE
[1] 0.00062

Note that with               the tracking error is less than .1%.  Run the 
code yourself to see what you get with             and try different       
values.    Also see what you get with               and the market as 
benchmark instead of the equal weighted large-cap portfolio.

500 
.01  

500 
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AQU R-Code Efficient Frontier Example

To be added in next version of slide deck
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4A.1  Minimum MSE Prediction

You have random variables X and Y and wish to “predict”
Y with a linear (strictly speaking “affine”) function of X : 

Ŷ a b X  

and want to minimize the prediction mean-squared-error 

2MSE( , ) ( )a b E Y a b X   

Intercept Slope

6/5/2013

1-D random variables only.  Will treat vector case later.
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( , ) 2 ( ) 0MSE a b E Y a b X
a


      


 ( , ) 2 ( ) 0MSE a b E X Y a b X
b


       


Take derivatives of MSE(a,b) with respect to a and b, and
set equal to zero:

The solutions     and     are:  

( ) ( )a E Y b E X  

 
 

 
2

( ( )) ( ( )) ( ( )) cov( , )
( ( )) ( ( )) var( )

E X Y E Y E X E X Y E Y X Yb
E X X E X E X E X X

    
  

  


a b

(generally non-zero!)

6/5/2013
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So the MMSE predictor is:  

ˆ

( ) ( )

( ) ( ( ))
cov( , )( ) ( ( ))

var( )

Y a b X

E Y b E X b X

E Y b X E X
X YE Y X E X
X

  

    

   

   


 


It is easy to check that the minimum MSE is:

2 2
ˆ

2 2
,

ˆ( )

(1 )
Y

Y X Y

E Y Y

 

 

  

6/5/2013
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Prediction Error Properties

Zero Mean:

 

ˆˆ

( )

( ) ( )

Y Y

Y a b X

Y E Y b X E X

  

   

    




 
   

ˆ( ) ( ) ( )

( ) ( )
0

E E Y E Y b X E X

E Y E Y b E X E X

       
    







6/5/2013
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   ˆ ( ) 0E X E X Y a b X      

Errors are Orthogonal* to Predictor:

Errors are Uncorrelated with Predictor

   ˆ ˆ ˆcov , ( ) ( ) 0X E X E X E      

Model with Intercept in Error Term

0ˆY b X   
0ˆ ˆa  where

X and       are uncorrelated, but in general                     ! 0ˆ 0E  0̂

6/5/2013

* Two random variables X and Y are said to be orthogonal if E(XY) = 0 
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Let *ˆ Y b X   

   *

2
2

ˆcov , cov ( )

cov( , ) cov( , )
cov( , )cov( , )

0

X
X

X X Y bX

X Y b X X
X YX Y






  

  

  







So X and       are also uncorrelated !*̂

Model with Intercept in the Error Term (continued)

Optimal      for predictor with
intercept, but dropping intercept

b
a

Then
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 2         A A A w Σw

Assumption of unlimited short-selling allows for an analytic solution 
(R. Roll, 1992).  Not of direct practical value, but interesting insights. 

     ( )A A P B     w μ

Minimize

Subject to

0A  w 1

(Minimize TEV)

(Expected active return)

(Self-financing)

4A.2 TEV Optimal Portfolios

6/5/2013

The R. Roll (1992) Solution
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The solution is in terms of the weight vectors        and       , and associated
portfolio means             and variances              shown in the picture below.        

0w 1w
0 1,  2 2

0 1, 

1

00

1

2
0

2
1





Line connecting origin and point labeled “0”        

Portfolio 0 is the familiar global minimum variance portfolio, and portfolio 1
is the portfolio given in the two-fund separation theorem obtained by 
maximizing quadratic utility.  The expressions for the weight vectors, means 
and variances are given on the next slide for convenience. 



2

6/5/2013

NOTE:  In this plot the horizontal 
axis is variance, not the usual 
standard deviation!
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Recall the quantities:
1 1 1,    ,    a b c    - - -1 Σ μ μ Σ μ 1 Σ 1

Portfolio 0: 1
0

0
2
0

/
/

1 /

c
a c

c










-w Σ 1

Portfolio 1: 1
1

1
2 2
1

/
/

/

a
b a

b a










-w Σ μ

6/5/2013
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Optimal Active Weights

 1 0
1 0

( )           A
A A P B


  

 
    


w w w

The active weights do not depend upon the benchmark portfolio!   
All managers make the same alteration to the benchmark:

P B A w w w

Optimal Tracking Error Variance
2

2 2 2
1 0

1 0

( )A
A TEV   

 
 

     

Note that                                 !0  0   A A

6/5/2013
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Total Variance

Beta of Portfolio P (on B)

2 2 2
0

1 0 0

2 1A B
P B TEV  

  
  

 
        

2
0
2

1 0 0

1 1A B
P

B

 


   
 

       

Proofs of the Above Results

Straightforward constrained quadratic minimization as in the efficient frontier with short-
selling, plus straightforward (a little tedious) algebraic manipulations (see appendices 
in Roll, 1992)

Note that                                 0      A P B

Note that                                 B 00 1    0 1  (   )and assuming           A P A P

6/5/2013
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







0

1





B

P

B*

P*

Efficient frontier

TEV frontier

TEV managed portfolio

Constant horizontal distance

 As P        B,  TEV 0

 Typically P has higher        and        than B




 It can be shown that all portfolio’s       that dominate B with respect to
both mean and standard deviation have                  

 
P P

0 >       > 1B P  
P

< 1P 

See Roll (1992) for details
on these properties

TEV Optimal Portfolios are Inefficient

6/5/2013
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2
A A A w Ωw 

Jorion (2003) cited the inefficiency of TEV optimal portfolios pointed 
out by R. Roll (1992), and proposed an alternate approach that is 
attractive, namely:  Maximize active return subject to a constraint on 
tracking error variance as well as absolute variance, along with the 
usual self-financing condition on the active weights.  That is:

     ( )A A P B     w μ

Subject to 0A  w 1 (Self-financing)

The Jorion (2003) TEV Constrained Solution

Maximize

(R.H.S. = TEV constraint)

2
P P P w Ωw  (R.H.S. = absolute variance constraint)

6/5/2013
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Jorion (2003): Solution is ellipse in mean return versus absolute 
variance coordinates, a bit distorted in mean return versus absolute 
standard deviation coordinates. 

Copyright R. Douglas Martin
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With TEV constraint of about 11.5% and total variance constraint 
set at benchmark variance  (about 14% std. dev.) the return 
improvement is approximately 3+ %. 

Copyright R. Douglas Martin


