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1.1  MVO theory basics
1.2  Estimates and estimation error
1.3  Constrained GMV portfolios
1.4  Constrained maximum mean return
1.5  Mean return constrained MVO
1.6  Quadratic utility maximization
1.7  R code for sections 1.3 through 1.6
1.8  Efficient frontiers
1A.1  No-cash MVO formulas
1A.2  Optimal risk aversion alternative derivation

1. WEIGHTS CONSTRAINED MVO
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1. Review key aspects of mean-variance optimal portfolio 
mathematical theory, including details on:

a. Global minimum variance portfolio and renewed interest in it
b. Linear efficient frontier

2. Illustrate estimation error with bootstrap resampling

3. Show in detail how to use solve.QP and 
Rglpk_solve_LP functions to compute MVO portfolios 
under frequently used weights constraints

4. Examples of efficient frontiers under weight constraints 
with view toward subsequent computing exercises

OVER-ARCHING GOALS
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1.1 MVO THEORY BASICS
This section provides a brief review of basic mean-variance portfolio 
optimization (MVO) with linear equality constraints.  These type of 
MVO problems have analytic solutions that can easily be obtained 
using the method of Lagrange multipliers, and as such have a long 
history in academic coverage of portfolio optimization.  There are three 
main types of such problems:

1. Investment in both cash and risky assets: portfolio weights in 
risky assets sum to less than one

2. Full-investment in risky assets: portfolio weights sum to one     
3. Benchmark relative active portfolios and dollar neutral 

portfolios, where weights sum to zero
Since applied portfolio optimization problems typically involve linear 
(and sometimes nonlinear) inequality constrains, analytic solutions 
with equality constraints are mainly of conceptual use and as 
reference points for performance loss caused due to inequality 
constraints and penalty terms.
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Since active portfolio management is a very substantial topic that we 
discuss in a later chapter, we defer discussion of type three MVO 
with linear equality constraints to that chapter and concentrate on 
the first two types in this section. 
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Returns Mean Vector & Covariance Matrix
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It is assumed throughout unless otherwise noted that the returns 
covariance matrix     is positive definite, hence non-singular.  
Under this assumption the inverse covariance matrix        exists.
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The Efficient Frontiers
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The Problem:  Minimize portfolio variance for each possible mean 
return constraint for two distinct cases:  (1) risky assets only, and (2) 
risky assets plus “cash” (i.e., risk-free investment)

.
Upper part of hyperbola is the
efficient frontier without cash

(Global) minimum variance 
portfolio without cash

Efficient frontier with cash

The Solution:  The “efficient frontiers”
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The Sharpe Ratio
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T is the maximum SR portfolioP.

NOTE:   Subsequently we develop a simple formula for  

For any portfolio P:
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$w.mv:

GENZ       HON       LLTC      MSFT       ORCL 

0.3081789 0.3753527 0.08328089 0.1456418 0.08754582

$mu.mv:

[1] 0.02577599

$sigma.mv:

[1] 0.08702582

$w.t:

GENZ         HON     LLTC      MSFT      ORCL 

0.5548272 -0.03873531 0.233836 0.1492129 0.1008592

$mu.t:

[1] 0.03648147

$sigma.t:

[,1] 

[1,] 0.107126

5/22/2013
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The Separation Theorem
The portfolio T is determined without knowledge of the investor’s risk 
preferences.  You only need to know the asset returns mean vector     ,      
the covariance matrix     , and  the risk-free rate     . 
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Intuitively, your risk aversion determines where you operate along the 
straight line.  Shortly we find out just how.
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We have not made use of any equilibrium assumption or 
market portfolio assumption.  In fact:

1. Under equilibrium it can be argued that T is the market 
portfolio M

2. The equilibrium and market portfolio result is needed to 
establish the capital asset pricing model (CAPM)

For discussion of the above see Luenberger (1998). 
Investment Science, Sections 7.1-7.3.

Equilibrium, Market Portfolio and CAPM
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No-Cash MVO Portfolios

5/22/2013

MVO portfolios with risky assets only, i.e., no cash, can be obtained by 
one of the following two equivalent methods, using a full-investment 
constraint that the portfolio weights sum to one, but with  no restriction 
on short-selling:

Method 1:  Minimize variance (risk) for each mean return target

Method 2:  Maximize quadratic utility

Both methods use Lagrange multipliers to hand the constraints (two in 
Method 1 and one in Method 2). 

Method 1 leads to the entire hyperbolic frontier whose shape and 
formula is given on the next slide. Derivation is given in 1A.1.

Method 2 leads only to the efficient frontier (why?).  See 1A.2.  
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No-Cash Global Min Variance Portfolio

subject tomin c
w

w Ȉw 1c  w 1

Here we assume full-investment in risky assets (no cash in portfolio), 
and have a very simple solution.  Recent research shows that this is a 
surprisingly good portfolio (see subsequent references and discussion)
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Set                              and apply constraint to get:

Langrangian:
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�
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c
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Knowledge of mean returns 
is not required, except as 
nuisance parameters in     !  Ȉ
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1

1
GMV GMV GMVV
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N.B.            can be positive or negative!GMVP
1

1GMV GMVP
�

�

c
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c
1 Ȉ ȝw ȝ
1 Ȉ 1

GMV Portfolio Mean Return and Volatility
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Clarke, de Silva and Thorley, S. (2006).  Minimum-Variance Portfolios in the 
U.S. Equity Market, Jour. of Portfolio Management, Fall, pp. 10-24.

� Monthly portfolio rebalancing 1968 through 2004 (456 months)
� Training window is one year of trailing daily excess returns
� 1,000 largest market cap stocks for each rebalance period
� Shrink 1,000 x 1,000 covariance matrix using Bayesian shrinkage  toward 

two-parameter covariance matrix (Ledoit & Wolf, 2004)
� Market is the cap-weighted portfolio of the 1,000 stocks (approx. R1,000)
� GMV portfolio is long-only with upper bound of 3% on weights.

Partial Results (annnualized using excess returns, avg. T-bill rate = 5.95):

Research Results on the GMV Portfolio

3RUWIROLR 0HDQ�5HWXUQ 9RODWLOLW\ 6KDUSH�5DWLR
0DUNHW ���� ����� ���
*09 ���� ����� ���

Will return to study the approach and results more carefully later on.
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Scherer, B. (2011). A New Look at Minimum Variance Investing. Journal of 
Empirical Finance.

Clarke, de Silva and Thorley, S. (2011).  Minimum-Variance Portfolio 
Composition, Jour. of Portfolio Management, Fall, 37, No. 2, 10-24.

Haugen, and Baker, N. (1991).  The Efficient Market Inefficiency of 
Capitalization Weighted Stock Portfolios, Jour. of Portfolio Management, 
Spring, 35-40.

See also:
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1 1

1 2
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No restriction on short-selling!

No-Cash Efficient Frontier

A hyperbola!
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A frequent approach to this problem is to first derive the efficient 
frontier with risky assets only (the upper part of the hyperbola) and 
then argue more or less heuristically that when cash is added you end 
up with the straight line that is tangent to efficient frontier of risky 
assets only.   This approach is often confusing.

On the other hand rigorous derivations can be obtained by two 
methods analogous to those used for the efficient frontier with no cash, 
only now the sum of weights in the risky assets is less than one:

Method 1:  Minimize variance (risk) for each mean return target

Method 2:  Maximize quadratic utility

Method 2 is simpler and leads directly to formulas for the maximum 
Sharpe ratio and risk aversion along the linear efficient frontier.

Risky Assets & Cash MVO Portfolios
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Quadratic Utility Optimality with Cash

e fr �ȝ ȝ 1
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Subject to:
0 1w c�  w 1

1
2f er Oc c� �w ȝ w Ȉw

In terms of excess returns                        the problem becomes:              

1 1
opt eO� � w Ȉ ȝ 0 1 optw c � w 1Solution:

0 O� � f

No short-selling restriction!

Maximize
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Optimal portfolio mean excess return:

1 1
, 0P e opt e e eP O� �c  !w ȝ ȝ Ȉ ȝ

Case 1:   An all cash position results as 

Case 2:   As               the portfolio weights become unbounded in 
absolute value.

O of

0O o

Question:  In Case 2 what happens to the investment       in cash?   0w

Note that                               and substitute into                                 .1 ,
1

P e

e e

P
O�

� 
ȝ Ȉ ȝ

1 1
opt eO� � w Ȉ ȝ
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The result is

which gives

1

,1
e

opt P e
e e
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Since                   we have the linear relationship:, 0P eP !

1
,P e e e optP V�c �ȝ Ȉ ȝ
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THEOREM:  Quadratic utility optimal portfolios with cash 
have the following mean versus volatility linear efficient 
frontier relationship:

1
P f e e PrP V�c � �ȝ Ȉ ȝ

PP

PV
fr

0J !
1

e e
�c ȝ Ȉ ȝslope
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Is Full Risky-Assets Investment Possible? 
You might wonder whether or not there is a point on the preceding 
linear efficient frontier that corresponds to full-investment in risky 
assets.  This is easy to check.   Full-investment in risky asset 
requires that:

1 1 11        opt e eO O� � �c c c  �  1 w 1 Ȉ ȝ 1 Ȉ ȝ

But since           , this is only possible if                       . Surprisingly, 
this condition has a simple interpretation.  Recalling the formula for 
the mean return          of the GMV portfolio, the excess mean return 
of the GMV portfolio is:

0O ! 1 0e
�c !1 Ȉ ȝ

1 1

, 1 1
e

GMV e frP
� �

� �

c c
 �  

c c
1 Ȉ ȝ 1 Ȉ ȝ
1 Ȉ 1 1 Ȉ 1

GMVP

Result:  Full-investment is possible if and only if the excess return of 
the GMV portfolio is positive.
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The Two Efficient Frontiers Revisited

PP

PV

fr

T.
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. Upper part of hyperbola is the
efficient frontier without cash

GMV portfolio without cash

Efficient frontier with cash

THEOREM:  If the excess mean return of the GMV portfolio is 
positive, then the linear efficient frontier with cash and risky assets is 
tangent to the no-cash efficient frontier at the fully-invested portfolio 
T, and the weights for T do not depend on investors risk preferences.

Proof:  Exercise, including getting the tangent portfolio weights, 
mean return and volatility.
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Sharpe Ratio on Linear Efficient Frontier

PP

PV
fr

T.

5/22/2013

.

The formula for the Sharpe ratio along the linear efficient follows for 
the mean versus volatility relationship previous derived: 

TSR.P
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Optimal Risk Aversion Parameter

e optO ȝ Ȉw

You can easily get the general form for the risk aversion parameter 
for a maximum quadratic utility portfolio with cash from the stationary 
equation that defines the maximum quadratic utility weights:

This gives:

2
,

1           opt e opt opt opt e opt opt
opt

SRO P OV O
V

c c �  �  �w ȝ w Ȉw

Furthermore, under the conditions of the previous Theorem we have 
that                        along the linear efficient frontier where T is the 
tangency portfolio.  Thus in that case we have:

1
T

opt

SRO
V

 �

opt TSR SR 
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Mean Returns Sensitivity of Portfolio
Consider the quadratic utility solution optimal weights                      for 
the case of two assets with mean returns, variances and covariance 
are given by                                              respectively.  If you derive 
the expression for the two weights             , you can easily compute 
the derivatives of each of the weights with respect to the two mean 
returns.  So for example: 

1 1O� � w Ȉ ȝ

1 2 11 22 12 21, , , , P P V V V V 
1 2, w w

11
2

1 11

1
(1 )

dw
d

O
P V U

� 
� �

This reveals a very important sensitivity issue for the weights of a 
MVO portfolio:

The larger the correlation between the assets the greater the 
sensitivity of the weights to changes in the asset mean returns.
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Maximum Sharpe Ratio Portfolio

It is straightforward to find the approximate weights, mean return 
and volatility of the tangency portfolio, i.e., the maximum Sharpe 
ratio portfolio of risk assets, once you have computed the efficient 
frontier at a discrete set of mean returns:  just compute the ratio of 
mean excess return to volatility for each such portfolio and choose 
the one that has the maximum ratio.  In addition to this being only 
an approximation, it requires computation of a lot of efficient frontier 
points and for large portfolios this may take a lot of time.  This 
raises the question of whether or not there is a direct way to find the 
weights, and hence mean return and volatility of the portfolio that 
maximizes the Sharpe ratio.  The answer to this question is 
positive, and the next slides show how to do this. 



5/22/2013 Copyright R. Douglas Martin 32

We want to solve:

   max ,      frc �
�

cw

w ȝ
w C

w Ȉw
(constraint set)

where       contains the full-investment constraint                 .

 f f er rc c c c�  �  w ȝ w ȝ w 1 w ȝ

 1c  w 1 C

Let

and assume there exists some       such that                   , for  
otherwise there is no point in investing in risky assets.  Then for 
any such weight vector the above problem is equivalent to:

w� 0ec !w ȝ�

   
1max ,      
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�
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(constraint set)
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With 

the problem is

   
1max ,       y�
cy

y C y
y Ȉy

(induced  constraints)

e

 
c
wy

w ȝ

Note that for any feasible               , we have                                    .    1e
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Thus the maximum Sharpe ratio is obtained by:
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You need estimates     and       of the unknown mean vector      and 
covariance matrix     .   The following estimates are the classical 
normal distribution maximum likelihood estimates (MLE’s).

Ȉ̂ȝ̂ ȝ
Ȉ

Mean and Covariance Matrix Estimates

Sample mean returns estimates (assumes stationarity in the mean)

1.2 ESTIMATES & ESTIMATION ERROR

� �1,..., ,   1,...,t t tnr r t Tc  r

Row vectors of rturns at time t for n assets 
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Exercise 1.1: Check that the covariance matrix estimate       has as 
elements the       given above.

Ȉ̂

NOTE: Useful “robust” alternatives to the above normal distribution 
MLE’s are often useful and we will discuss these later on. 

Returns covariance matrix estimate (assumes covariance stationarity)
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Returns matrix:

1
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Alternative representation of the sample covariance matrix 
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Sample means matrix:

Sample covariance matrix:
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   ˆmin ,      c¦ �
w

w w w C (linear "inequality" constraints)
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Regression Version of MVO

Substituting                                                    into the above gives:
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Thus the problem                             is equivalent to:ˆmin c¦
w

w w

2

, 1
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But it is easy to see that this problem is equivalent to:

For minimization first with respect to       for fixed       results in:
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1, 2, ,0,   t t Ty   "

Consider the linear regression model:

1, 2, ,,     t t t t Ty J H  c � �r w "

Where the     are the known n x 1 vectors of asset returns, the 
portfolio weight vector are the unknown regression coefficients 
and the      are response variables.  The ordinary least squares 
(OLS) estimate of the weight vector is the solution of the “normal” 
equations:

tr
w

ty

2

, 1

min ( )
T

t
t

y
J

J
 

c� �¦ tw
w r

Thus we see that the MVO portfolio weights are the OLS solution 
to a linear regression problem with response variables that are 
identically zero,                                     and subject to the 
constraints              .  This allows one to use a wide range of 
constrained linear regression methods to get MVO weights, e.g., 
robust regression and penalized regression methods.  

�w C
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Example:  Robust Portfolio Optimization

For robustness toward outliers influence:

Possible choices ȡ:

LAD

Huber

Optimal Bias Robust                         (Yohai & Zamar,1997)

See Maronna, Martin & Yohai (2006), Robust Statistics: Theory & Methods

( )t tU  

, 1

min
ˆ

T

t sJ

JU
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, ( )YZ c tU
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“The error maximization effect:  the investor over-weights 
the assets whose mean return is over-estimated, leading to 
a positive mean return forecast bias.  This also leads to a 
bias toward a higher-risk portfolio: the manager has an 
exaggerated perception in the marginal increase in 
expected return per unit of risk and so chooses a portfolio 
that is  riskier than optimal.”   Connor et. al. (2010).

See Section 2.2 of Connor et. al. for some empirical details.

Portfolio Optimizers are Error Maximizers
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1. Let       be the n-dimensional multivariate empirical 
distribution of the T x n table of returns.

2. Do a Monte Carlo simulation of T returns from       
to produce a single bootstrap table sample. This is 
equivalent to taking T samples with replacement 
from the original table. For each such sample 
compute an efficient frontier.

3. Compute B bootstrapped efficient frontiers by 
repeating the 2nd step B times.

ˆ
nF

Bootstrap Efficient Frontiers

ˆ
nF

Non-Parametric Bootstrap
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Small-Cap Portfolio Example
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1. For the GMV portfolios that don’t depend directly on 
mean return estimates the portfolio volatility variability 
is relatively much smaller than the portfolio mean 
return volatility.  You don’t have much confidence in 
the latter (it is even negative in one bootstrap sample)

2. As you move up the efficient frontier, where the 
sample mean return estimate is used,  the variability 
in portfolio mean returns get larger. 

NOTE:  It will be interesting to study the bootstrap 
variability of the maximum Sharpe ratio portfolio.

Things to Notice
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You will be using the R function solve.QP in the R package quadprog
to solve portfolio mean-variance optimization with constraints. 
solve.QP is a  basic quadratic programming (QP) optimizer that 
solves quadratic programming problems with constraints.  In addition 
you will use the function Rglpk_solve_LP from the package Rglpk.

NOTE:  The R code in this section will be posted to class web site.

1.3  CONSTRAINED GMV PORTFOLIOS

5/22/2013

1 2( , , , )nw w w c w "Portfolio weights                                    

The weights represent fractions of wealth invested in risky assets.

Asset Mean Return and Covariance Estimates

In the sequel whenever we use the notation      and       we assume 
that these are data based estimates     and     unless otherwise noted.

ȝ Ȉ
ȝ̂ Ȉ̂
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solve.QP solves quadratic programming problems of the following 
general type where          denotes the transpose of a vector or matrix.

1minimize
2

§ ·c c�¨ ¸
© ¹

x Dx d x
x

subject to       c tA x b

Quadratic Programming with solve.QP

d n x 1 vector

D n x n matrix

cA k x n matrix

5/22/2013

"  "c

b k x 1 vector

x n x 1 vector
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> library(quadprog)
> args(solve.QP)
function (Dmat,dvec,Amat,bvec,meq = 0,factorized = FALSE) 

Dmat:  the matrix      in the previous slide
dvec:   the vector      in the previous slide
Amat:  the matrix      in the previous slide
bvec:   the vector        in the previous slide
meq:    the first meq constraints are treated as equality constraints,

and the remainder are inequality constraints
Factorized:  factorized logical flag: if TRUE, then we are passing       , 

where                instead of in the argument Dmat

NOTE:  Maybe the authors of solve.QP mean      instead of        ? 
This needs to be checked.

c D R R
1�R

D

1�RcR

D
d
A

lob
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Notation Mapping
1   n uo  d  0 vector of zero's (no linear part)

ˆ      n no  uD Ȉ returns covariance matrix estimate

1   n uo  x  w vector of portfolios weights

minimize ˆ cw Ȉw
w

subject to    c tA w b

NOTE 1:  The matrix     will often contain the vector of mean returns 
estimates                                     .   I      

A
1 2ˆ ˆ ˆ ˆ( , , , )nP P P c ȝ "

NOTE 2:  Often the “hats” for estimates will be omitted for simplicity 
of notation, and we will still mean estimates unless otherwise noted.     
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library(quadprog)
library(xts)
load("C:/Doug/AMath Courses/AMATH 
543/Data/crsp.short.Rdata")
returns.ts = midcap.ts[,1:10]
plot.zoo(returns.ts,plot.type = "multiple",main = 

"MID-CAP RETURNS")
returns = coredata(midcap.ts[,1:10])

The following code loads the libraries and CRSP mid-cap returns 
data you need for this and makes the plot on the next slide.

Mid-Cap Returns for Following Examples



5/22/2013 Copyright R. Douglas Martin 51

-0
.3

-0
.1

0.
1

0.
3

M
A

T
-0

.2
0.

0
0.

2

E
M

N
-0

.2
0.

0
0.

2

LE
G

-0
.6

-0
.2

0.
2

A
A

P
L

1997 1998 1999 2000 2001 2002

Index

-0
.1

5
0.

00
0.

15

U
TR

-0
.3

-0
.1

0.
1

0.
3

H
B

-0
.3

0.
0

0.
2

0.
4

B
N

K
-0

.2
0.

0
0.

2

A
P

A
-0

.2
0.

2

LN
C

R

1997 1998 1999 2000 2001 2002

Index

-0
.2

0.
0

0.
2

B
M

E
T

MID-CAP RETURNS

Mid-Cap Returns Data for Following Examples



5/22/2013 Copyright R. Douglas Martin 52

General Constrained GMV Code

constraints = function(A,b,meq)
{ 
list(A = A, b = b, meq = meq)
}

Constraint Builder Function

It will be convenient to have the following simple constraint builder 
function to use as input to a general global minimum variance 
(GMV) optimization function

Example: Fully-invested but no other constraints

p = ncol(returns)
A = matrix(rep(1,p),ncol=1)
cset.nc = constraints(A,1,1)
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General GMV Function

5/22/2013

# If cset = NULL, then unconstrained gmv
# For back-test use default wts.only = T
# For efficient frontier use wts.only = Fgm
# For  printout of wts, mu and sd use digits = 3 or 4

gmv = function(returns,cset=NULL,wts.only=T,digits = NULL)
{

V = var(returns)
mu = apply(returns,2,mean)
p = ncol(returns)
d = rep(0,p)    # No linear term in objective
if(is.null(cset))
{A = matrix(rep(1,p),ncol =1)
b = 1
meq = 1}
else
{A = cset$A
b = cset$b
meq = cset$meq}



Copyright R. Douglas Martin 545/22/2013

port.gmv = solve.QP(V,d,A,b,meq)
wts = port.gmv$solution # Get optimal weights
mu = sum(wts*mu)
wts = as.matrix(wts)
sd = as.numeric(sqrt((t(wts)%*%V%*%wts)))
wts = as.numeric(wts)
if(!is.null(digits))
{names(wts)= dimnames(returns)[[2]]
out = list(WTS = wts,MU.PORT = mu,SD.PORT = sd)
lapply(out,round,digits)}
else
{if(wts.only) wts else mu}

}



Copyright R. Douglas Martin 55

Ex1.1 Unconstrained GMV Portfolio

5/22/2013

> gmv(returns,digits = 3)

$WTS
MAT   EMN  LEG  AAPL   UTR   HB   BNK   APA  LNCR  BMET 

.264 -.059 -.085 .151  0.407 .166 -.039 .016  .034  .145 

$MU.PORT
[1] 0.017

$SD.PORT
[1] 0.052

Exercise:  Confirm the above results using the analytic weights formula.



Copyright R. Douglas Martin 565/22/2013

Require full-investment and no short selling. The constraint matrix     
and lower bound vector     needed to achieve this are:

1 1 1 1
1 0 0 0
0 1 0 0

     ( 1)

0 0 1 0
0 0 0 1

n n

§ ·
¨ ¸
¨ ¸
¨ ¸

c  � u¨ ¸
¨ ¸
¨ ¸
¨ ¸¨ ¸
© ¹

A

"
"
"

# # # # #
"
"

A
b

(1,0,0, ,0)       ( 1) 1nc � ub "

And you again use the choice  meq = 1.

Ex1.2 Long-Only GMV Portfolio
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p = ncol(returns)
A = cbind(rep(1,p), diag(rep(1,p))) # Constraint matrix
b = c(1,rep(0,p))                   # Constraint bound
cset.lo = constraints(A,b,1)
cset.lo

The GMV Long-Only Constraint Object:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,]    1    1    0    0    0    0    0    0    0     0     0
[2,]    1    0    1    0    0    0    0    0    0     0     0
[3,]    1    0    0    1    0    0    0    0    0     0     0
[4,]    1    0    0    0    1    0    0    0    0     0     0
[5,]    1    0    0    0    0    1    0    0    0     0     0
[6,]    1    0    0    0    0    0    1    0    0     0     0
[7,]    1    0    0    0    0    0    0    1    0     0     0
[8,]    1    0    0    0    0    0    0    0    1     0     0
[9,]    1    0    0    0    0    0    0    0    0     1     0
[10,]    1    0    0    0    0    0    0    0    0     0     1

[1] 1 0 0 0 0 0 0 0 0 0 0    (solve.QP treats this as a column vector)
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gmv(returns,cset,F,3)

$WTS
MAT  EMN   LEG  AAPL  UTR  HB   BNK   APA  LNCR  BMET 

.224 .000  .000 .132  .322 .164 .000 .011 .011 0 136 

$MU.PORT
[1] 0.0155

$SD.PORT
[1] 0.0526

Note that the long-only constraints results in zero weights, i.e., the
constraints are binding, for the stocks EMN, LEG and BNK that
had short positions in Ex1.1. Note also that imposing the long-only
constraint has resulted in a somewhat smaller portfolio mean return
and slightly larger portfolio risk than in the Ex1.1.
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GMV with Box Constraints

5/22/2013

Investors often prefer  additional weights constraints beyond the full-
investment and long-only constraints.  The simplest such constraints 
are “box” constraints, consisting of upper and lower bounds on 
weights.  Box constraints are used to help insure diversification and 
avoid over-concentration.

When using solve.QP you need to cast the upper and lower bounds in 
terms of lower bounds only.  This is quite easy to do by reversing the 
signs in the A matrix and b vector for those constraints that are upper 
bounds, as shown on the next slide.  
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1 1 1 1
1 0 0 0
0 1 0 0

0 0 1 0
     (2 1)0 0 0 1

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

n n

§ ·
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¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
¨ ¸
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b

#
#

#
#

Use meq = 1 in solve.QP for the full-investment equality constraint
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Let’s use a lower bound of 5% and an upper bound of 15%.
p = ncol(returns)
A = cbind(rep(1,p), diag(rep(1,p)),diag(rep(-1,p)))
b = c(1,rep(.03,p),rep(-.25,p))
cset.box = constraints(A,b,1) 
gmv.constrained(returns,cset.box,F,3)

$WTS
MAT  EMN  LEG  AAPL  UTR  HB   BNK  APA  LNCR  BMET 

.200 .030 .030 .124  .250 .161 .030 .030  .030  .115 
$MU.PORT
[1] 0.0153
$SD.PORT
[1] 0.0537

The mean return is just slightly lower and risk is slightly higher than in Ex1.2.  
The upper constraint is binding for just 1 of the stocks but the lower 
constraint is binding for 5 of the stocks, 3 of which were binding in Ex1.1.

Ex1.3 GMV with Box Constraints
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Investors often prefer  group constraints in addition the long-only 
constraints, and possibly group constraints combined with box 
constraints.  For examples you might want market capitalization 
concentration constraints such as the following.

Group Constraints plus Long-Only

Weights Constraints:  No stock less than 3% or more than 25%

Market Cap Constraints: 

At least 10% and no more than 25% in micro-caps
At least 15% and no more than 35% in small-caps
No more than 35% in mid-caps
No more than 45% in large-caps

You might at the same time want the following box constraints, but we 
will ignore that for the moment:
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(1 2 )
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         1  vector of 1's
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     k  negative upper bounds group constraints matrix

n
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u
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  1          1 1 the numeric value "one"
         1 vector of zero's
      1 vector of lower bounds

  1 negative vector of upper bounds

n

g lo

g up
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k

u
u
u

� u

0
b

b

Constraints Matrix for Groups & Long-Only

Use a meq = 1 argument in solve.QP for the full-investment constraint
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By way of an example let’s use a portfolio of 8 stocks with 2 from each 
of the four CRSP data market cap groups, created as follows:

> returns8 = cbind(microcap.ts[,1:2],smallcap.ts[,1:2],
+                      midcap.ts[,1:2],largecap.ts[,1:2])

> names(returns8)
[1] "GHI"  "PBCI" "MODI" "MGF"  "MAT"  "EMN"  "AMAT" "AMGN“

> plot.zoo(crsp.port8,plot.type = "multiple",main = "MIXED 
MARKET CAP RETURNS")

5/22/2013

Micro-caps: GHI  PBCI
Small-caps: MODI MGF
Mid-caps: MAT   EMN
Large-caps: AMAT AMGN

Ex1.4 GMV Group and Long-Only Constraints
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1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

g

§ ·
¨ ¸
¨ ¸c  
¨ ¸
¨ ¸
© ¹

A

,  (.1,  .15,  0,  0)g loc  b

, ( .25,  .35,  .35,  .45)g up�  � � � �b

Example Constraints Matrix and Vector

At least 10% and no more than 25% in micro-caps
At least 15% and no more than 35% in small-caps
No more than 35% in mid-caps
No more than 45% in large-caps
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p = ncol(returns)
Ag = rbind(c(1,1,0,0,0,0,0,0),c(0,0,1,1,0,0,0,0),

c(0,0,0,0,1,1,0,0),c(0,0,0,0,0,0,1,1))
Atp = rbind(rep(1,p), diag(rep(1,p)),Ag,-Ag)
A = t(Atp)
bglo = c(.1,.15,0,0)
bgup = c(.25,.35,.35,.45)
b = c(1,rep(0,p),bglo,-bgup)
cset.groups = constraints(A,b,1)
gmv(returns,cset.groups,F,4)

$WTS
GHI   PBCI   MODI    MGF    MAT    EMN   AMAT   AMGN 

0.0157 0.2343 0.0000 0.3500 0.1084 0.1309 0.0208 0.1399 

$MU.PORT
[1] 0.0101

$SD.PORT
[1] 0.0306

5/22/2013
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wts = gmv(returns,cset)
wts.groups = wts[c(1,3,5,7)]+wts[c(2,4,6,8)]
names(wts.groups) = c("Micro","Small","Mid","Large")
round(wts.groups,3)

Micro  Small   Mid Large 
0.250 0.350  0.239  0.161 

5/22/2013

If in addition you may want to see the total allocation to each of the 
four market cap groups you can easily do it with the following code:

Note that the upper bound constraint is binding for the micro-cap and 
small-cap groups, but not for mid-cap and large-cap groups.
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The Constraints Objects and Returns
It will be convenient for the remainder of the computations in this lecture to 
create the three constraint objects in an R script named 
constraint.sets.r that can be sourced, and this script will be posted at 
the web site.  Note that the constraint sets are portfolio specific to a lessor or 
greater degree.  In the case of long-only and box constraints the only aspect 
of the portfolio that is needed is the number of returns.  But the groups 
constraint object requires the group structure of the assets as well as the 
number of assets.  Thus the constraint.sets.r imports CRSP data and 
creates the data objects returns and returns8 as well as creating the 
constraint objects.  
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This section is a preparation for computing efficient frontiers with 
constraints.  In order to compute an efficient frontier with constraints 
you need to know what the range of target mean returns is feasible.  
The mean return of a constrained GMV, which we now know how to 
compute, provides a natural minimum mean return to use in 
computing an efficient frontier.  But the maximum mean return under 
constraints needs to be computed numerically except in the special 
case of a long-only portfolio.  In this section we show how to do that.  
But we first note in passing on the next slide how easy it is to get the 
maximum mean return of a long-only portfolio.

1.4  CONSTRAINED MAX MEAN RETURN

5/22/2013
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Maximum Mean Return for Long-Only Portfolios
,I�WKH�RQO\�FRQVWUDLQW�LV�D�ORQJ�RQO\�FRQVWUDLQW�WKHQ�\RX�FDQ�HDVLO\�VHH�
WKDW�WKH�ODUJHVW�DFKLHYDEOH�UHWXUQ�LV�WKH�PHDQ�UHWXUQ�RI�WKH�DVVHW�KDYLQJ�
WKH�KLJKHVW�PHDQ�UHWXUQ���)RU�WKH�PLG�FDS�UHWXUQV�RI�WKH�SUHYLRXV�
VHFWLRQ WKH�RXWSXW�EHORZ�UHYHDOV�WKLV�WR�EH�������

5/22/2013

round(mu,3)
MAT  EMN  LEG  AAPL UTR  HB   BNK   APA  LNCR  BMET 
.000 .003 .011 .032 .013 .014 .015 .016 .026 .031 
round(max(mu),4)
[1] 0.0324

+RZHYHU��LW�LV�FRQYHQLHQW�WR�GHDO�ZLWK�WKLV�VSHFLDO�FDVH�LQ�D�JHQHUDO�
FRQVWUDLQWV�IUDPHZRUN�DV�LQ�WKH�IROORZLQJ�VOLGHV�
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Constrained Maximum Mean Return
The problem is now the following pure linear programming special case 
of the constrained quadratic programming problem, where      is the 
vector of estimated mean asset returns:

1ˆ ˆmaximize minimize
2

§ ·c c c �¨ ¸
© ¹

ȝw w 0w ȝw
w w

subject to       c tA x b

It would be nice if we could continue to use solve.QP with            , but 
unfortunately this does not work.  So instead we use the pure linear 
programming package Rlpgk.

ȝ̂

 D 0
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Rglpk_solve_LP Formulation
The Rglpk_solve_LP function in the R package Rglpk solves the 
general linear programming problem

maximize cd x
x

subject to       Ax b�

Note that the constraint matrix is now       not       !   For our constrained 
maximum mean portfolio return problem the above becomes: 

A cA

ˆmaximize cȝ w
w

subject to       Aw b�

Where the symbol           indicates an arbitrary mix of inequality or 
equality constraints on a constraint by constrain basis (see next slide)

" "�
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> library(Rglpk)
> args(Rglpk_solve_LP)
function (obj, mat, dir, rhs, types = NULL, max = FALSE,

bounds = NULL, verbose = FALSE)

obj:   vector of objective coefficients 
mat:   constraints matrix

dir:   gt, gte, lt, lte, eq for each constraint  (a character string of these)
rhs:   vector of constraints bounds

types:    type of variables (continuous, integer, binary)
max:    TRUE results in maximization, FALSE in minimization 

bounds:    box constraints on variables
verbose:   FALSE gives minimal output, TRUE gives maximum output

In terms of the previous matrix and vector notation:

obj = 
mat =
rhs =

A
b

d
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Constrained Max Mean Return Code
We note that the constraint specification requirements of 
Rglpk_solve_LP are somewhat different than those of solve.QP.  
Rather than create a separate constraint builder object for the 
former, one can simply automatically convert the solve.QP
constraint object into the needed Rglpk_solve_LP constraint 
object inside the general maximum mean return code on the next 
slide.  The lines of the code that do the needed conversion based on 
providing the solve.QP cset object as an input argument are as 
follows:

A = cset$A
k = nrow(A)-1
dir = c("==",rep(">=",k))
b = cset$b
dir = cset$dir
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# Default is to return only the constrained max mean return
# For weights, mean & std. dev. choose digits = 3 or 4
# mu.only = FALSE results in returning only the weights

maxmu = function(returns,cset, mu.only=TRUE, digits=NULL,
verbose = FALSE)

{
V = var(returns) # Only need for risk calculation
mu = apply(returns,2,mean)
d = mu
A = t(cset$A)  # Because solve.QP uses transpose of A
k = nrow(A)-1
dir = c("==",rep(">=",k))
b = cset$b
port.maxmu = Rglpk_solve_LP(d,A,dir,b,max = TRUE, 

verbose = verbose)
wts = port.maxmu$solution # Get optimal weights

General Max Mean Return Function
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mu = sum(wts*mu)
wts = as.matrix(wts)
sd = as.numeric(sqrt((t(wts)%*%V%*%wts)))
wts = as.numeric(wts)
if(!is.null(digits))
{names(wts)= dimnames(returns)[[2]]
out = list(WTS = wts,MU.PORT = mu,SD.PORT = sd)
lapply(out,round,digits)}
else
{if(mu.only) mu else wts}
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library(Rglpk)
source(“mvo.constrained.r”) # loads maxmu function
source(“constraint.sets.r”) # also loads returns, returns8

# Compute long-only constrained maximum mean return
maxmu(returns,cset.lo)
[1] 0.03236464    # As expected, see slide 68

Ex1.5 Max Mean Return Long-Only

# Return all output
maxmu(returns,cset.lo,digits = 3)
$WTS
MAT  EMN  LEG AAPL  UTR   HB  BNK  APA LNCR BMET 
0    0    0    1    0    0    0    0    0    0 

$MU.PORT
[1] 0.032

$SD.PORT
[1] 0.193
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Max Mean Return with Box Constraints in Rglpk
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b

#
#

#
#

dir = c(" ", (" ", ), (" ", ))rep n rep n  ! � and the Rglpk_solve_LP argument

A natural way to use Rglpk_solve_LP for this is as below.
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b

#
#

#
#

However, doing it as below results in being able to use the 
transpose of the constraint matrix used in solve.QP.

and the Rglpk_solve_LP argument dir:  c(" ", (" ",2* ))rep n  ! 

Ross Bennett
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maxmu(returns,cset.box)
[1] 0.02520268

# For all output:

> maxmu(returns,cset.gmvbox,digits = 3)
$WTS
MAT  EMN  LEG AAPL  UTR   HB  BNK  APA LNCR BMET 
0.03 0.03 0.03 0.25 0.03 0.03 0.03 0.07 0.25 0.25 

$MU.PORT
[1] 0.025

$SD.PORT
[1] 0.074

Note that all constraints are binding.

Ex1.6 Max Mean Return Box Constraints
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maxmu(returns8,cset.groups)
[1] 0.02311682

# For all output:

maxmu(returns8,cset.groups,F,3)
$WTS
GHI PBCI MODI  MGF  MAT  EMN AMAT AMGN 
0.25 0.00 0.30 0.00 0.00 0.00 0.45 0.00 

$MU.PORT
[1] 0.023
$SD.PORT
[1] 0.098

5/22/2013

Ex1.7 Max Mean Return Group Constraints
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Now that we know how to compute the maximum and minimum mean returns 
achievable under the constraints imposed, we can compute the minimum 
variance portfolio for any specified mean return in between these two limits.   
We illustrate the general method for the case of a long-only portfolio below 
where we use the choice meq = 2 in solve.QP.

1.5 MEAN RETURN CONSTRAINED MVO

5/22/2013

1 2 1ˆ ˆ ˆ ˆ
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"
"
"
"

# # # # #

0( ,1,0,0, ,0)       ( 2) 1lo nP c � ub "

Important:  This is the way to do it in 
general, i.e., append the vector of 
estimated mean returns in the first row.



5/22/2013 Copyright R. Douglas Martin 84

General Constrained MVO Function
# If cset = NULL, then unconstrained mvo
# For back-test use default wts.only = T
# For efficient frontier use wts.only = F
# For  printout of wts, mu and sd use digits = 3 or 4

mvo = function(returns,mu0,cset=NULL,wts.only=T,digits = 
NULL)
{

V = var(returns)
mu = apply(returns,2,mean)
p = ncol(returns)
d = rep(0,p)    # No linear term in objective
if(is.null(cset))
{A = cbind(mu,rep(1,p))
b = c(mu0,1)
meq = 2}
else
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{A = cset$A
A = cbind(mu,A)
b = cset$b
b = c(mu0,b)
meq = cset$meq + 1}
port.gmv = solve.QP(V,d,A,b,meq)
wts = port.gmv$solution # Get optimal weights
mu = sum(wts*mu)
wts = as.matrix(wts)
sd = as.numeric(sqrt((t(wts)%*%V%*%wts)))
wts = as.numeric(wts)
if(!is.null(digits))
{names(wts)= dimnames(returns)[[2]]
out = list(WTS = wts,MU.PORT = mu,SD.PORT = sd)
lapply(out,round,digits)}
else
{if(wts.only) wts else c(mu,sd,wts)}

}
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Ex1.8 Long-Only Portfolio with 2.5% Mean Return

library(Rglpk)
source(“mvo.constrained.r”) # loads mvo function
source(“constraint.sets.r”) # also loads returns, returns8

# Compute long-only constrained maximum mean return
mvo(returns,.025,cset.lo, digits = 3)

$WTS
MAT EMN   LEG  AAPL UTR HB  BNK   APA  LNCR  BMET 
.065 .000  .000 .182  .088 .114 .000 .006 .142 .405 

$MU.PORT
[1] 0.025

$SD.PORT
[1] 0.067  # Higher than GMV and lower than maxmu portfolio

Recall from Ex1.2 that the mean return of the GMV long-only portfolio
was .015 and the maximum long-only mean return was .032. So let’s
use .025 as the mean return constraint.
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Ex1.9 Box Constraints and 2% Mean Return

# Compute long-only constrained maximum mean return
mvo(returns,.02,cset.box, digits = 3)

$WTS
MAT  EMN  LEG  AAPL  UTR  HB   BNK  APA  LNCR  BMET 

.113 .030 .030 .152  .146 .138 .030 .030  .081  .250 

$MU.PORT
[1] 0.02

$SD.PORT
[1] 0.058

Recall from Ex1.3 that with box constraints the mean return of the GMV
portfolio was .0153 and the maximum mean return was .025. So let’s
use .02 as the mean return constraint.

Slightly higher than the GMV risk of .56 and lower
than the maximum mean return portfolio risk of .065.
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Ex1.10 Group Constraints and 1.5% Mean Return

# Compute long-only constrained maximum mean return
mvo(returns,.015,cset.groups, digits = 3)

$WTS
GHI  PBCI  MODI   MGF   MAT   EMN  AMAT  AMGN 

0.043 0.207 0.000 0.350 0.052 0.049 0.101 0.197 

$MU.PORT
[1] 0.015

$SD.PORT
[1] 0.039

Recall from Ex1.4 that with group constraints the mean return of the
GMV portfolio was .0101 and from Ex1.7 the maximum mean return
was .023. So let’s use .015 as the mean return constraint.
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1.6 MAXIMIZING QUADRATIC UTILITY

2
Oc c� �w ȝ w Ȉw

5/22/2013

The preceding solutions in this section can be obtained by maximizing 
quadratic utility

under the various constraints. When using solve.QP to solve 

1minimize
2

§ ·c c�¨ ¸
© ¹

x Dx d x
x

d n x 1 vector

D n x n matrix

x n x 1 vector
subject to       loc tA x b

Just set                     ,              and             . O �D Ȉ  d ȝ

Equivalently set                and                     . 

 x w

 D Ȉ 1O� �d ȝ
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QU Maximization R Code

5/22/2013

# For back-test use default wts.only = T
# For efficient frontier use wts.only = F
# For  printout of wts, mu and sd use digits = 3 or 4
qu = function(returns,cset=NULL,lambda,wts.only=T,

digits = NULL)
{

require(quadprog)
V = var(returns)
mu = apply(returns,2,mean)
p = ncol(returns)
d = mu/lambda
if(is.null(cset))
{A = cbind(rep(1,p))
b = 1
meq = 1}
else
{A = cset$A
b = cset$b
meq = cset$meq}
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port.mvo = solve.QP(V,d,A,b,meq)
wts = port.mvo$solution # Get optimal weights
mu = sum(wts*mu)
wts = as.matrix(wts)
sd = as.numeric(sqrt((t(wts)%*%V%*%wts)))
wts = as.numeric(wts)
if(!is.null(digits))
{names(wts)= dimnames(returns)[[2]]
out = list(WTS = wts,MU.PORT = mu,SD.PORT = sd)
lapply(out,round,digits)}
else
{if(wts.only) wts else c(mu,sd,wts)}

}
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Ex1.11 Approximate GMV and Max Mu

qu(returns,cset.lo,.01,digits = 4)
$WTS
MAT  EMN  LEG AAPL  UTR   HB  BNK  APA LNCR BMET 
0    0    0    1    0    0    0    0    0    0 

$MU.PORT
[1] 0.032

$SD.PORT
[1] 0.193

qu(returns,cset.lo,20,digits = 4)
$WTS
MAT  EMN  LEG   AAPL  UTR   HB   BNK   APA   LNCR  BMET 

0.222 0.000 0.000 0.133 0.320 0.163 0.000 0.011 0.012 0.139 

$MU.PORT
[1] 0.016

$SD.PORT
[1] 0.053

Compare the following results with Ex1.2 and Ex1.5.
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We now have a basic set of tools to carry out the computations in Section 1.3 
through 1.6 as follows:

1. A constraints function and a set of constraint objects

2. A gmv function to compute the global minimum variance portfolio

3. A  minmu function to compute mean return of the GMV portfolio

4. A  maxmu function to compute the maximum mean return

5. An mvo function to minimize variance at a specified mean return

The above functions are all provided in mvo.constrained.r, which you should 
look at, note optional argument usage comments, and  source for carrying out 
constrained MVO.

Some additional scripts and functions are useful in carrying out the computations 
in Sections 1.3 through 1.6, and for computing efficient frontiers, as described in 
the next slides.

1.7  R CODE FOR EXAMPLES

5/22/2013
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constraints.set.r
library(xts)
load("C:/Doug/AMATH Courses/AMATH 543/Data/

crsp.short.Rdata")
returns.ts = midcap.ts[,1:10]
returns = coredata(midcap.ts[,1:10])
returns8 = cbind(microcap.ts[,1:2],smallcap.ts[,1:2],

midcap.ts[,1:2],largecap.ts[,1:2])
returns8 = coredata(returns8)

# Long-Only Constraints
p = ncol(returns)
A = cbind(rep(1,p), diag(rep(1,p))) # Constraint matrix
b = c(1,rep(0,p))                   # Constraint bound
cset.lo = constraints(A,b,1)

# Box Constraints
p = ncol(returns)
A = cbind(rep(1,p), diag(rep(1,p)),diag(rep(-1,p)))
b = c(1,rep(.03,p),rep(-.25,p))
cset.box = constraints(A,b,1)
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NOTE 1:  Sourcing constraint.set.r results in loading 
the data needed for the computations as well as creating the 
constraint objects.

NOTE 2:  The scripts  minmu.constrained.r
maxmu.constrained.r and mean.constrained.r
on the next slides create Ex1.1 through Ex1.10 in the previous 
sections.

# Group Constraints
p = ncol(returns8)
Ag = rbind(c(1,1,0,0,0,0,0,0),c(0,0,1,1,0,0,0,0),
+           c(0,0,0,0,1,1,0,0),c(0,0,0,0,0,0,1,1))
Atp = rbind(rep(1,p), diag(rep(1,p)),Ag,-Ag)
A = t(Atp)
bglo = c(.1,.15,0,0)
bgup = c(.25,.35,.35,.45)
b = c(1,rep(0,p),bglo,-bgup)
cset.groups = constraints(A,b,1)
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minmu.examples.r

# Ex1.1 GMV No Constraints
gmv(returns,digits = 3)
minmu(returns)

# Ex1.2 GMV long-only
gmv(returns,cset.lo,F,3)
minmu(returns,cset.lo)

#Ex1.3 GMV box constraints
gmv(returns,cset.box,F,4)
minmu(returns,cset.box)

# Ex1.4 GMV Group Constraints and Long-Only
gmv(returns8,cset.groups,F,4)
minmu(returns8,cset.groups)

# Group weights
wts = gmv(returns8,cset.groups)
wts.groups = wts[c(1,3,5,7)]+wts[c(2,4,6,8)]
names(wts.groups) = c("Micro","Small","Mid","Large")
round(wts.groups,3)
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maxmu.examples.r

library(Rglpk)
library(xts)
source("mvo.constrained.r")
source("constraint.sets.r")

# Ex1.5 Maximum mean long-only
maxmu(returns,cset.lo)
maxmu(returns,cset.lo,digits =3)

#Ex1.6 Max Mean Return box constraints
maxmu(returns,cset.box)
maxmu(returns,cset.box,digits = 3)

# Ex1.7 GMV Group Constraints and Long-Only
maxmu(returns8,cset.groups)
maxmu(returns8,cset.groups,digits = 3)
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mean.constrained.examples.r

library(Rglpk)
library(xts)
source("mvo.constrained.r")
source("constraint.sets.r")

# Ex1.8 MVO Long-Only and 2.5% Mean Return
mvo(returns,.025,cset.lo,digits = 3)

# Ex1.9 MVO With Box Constraints and 2% Mean Return
mvo(returns,.02,cset.box,digits = 3)

# Ex1.10 MVO With Group Constraints and 1.85% Mean Return
mvo(returns8,.015,cset.groups,digits = 3)
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With the code of the previous section in hand we will be able to compute and 
plot efficient frontiers with constraints by creating the following:

1. A wrapper function to compute a set of constrained MVO values along an 
efficient frontier

2. A flexible plotting function with various options

The function is as follows, with code on next slide:

efrontMV(returns, cset = NULL, npoints = 10)

The second function is:

efrontPlot(returns,c set = NULL, minmu = NULL, 
maxmu = NULL, rf = NULL, npoints = 10,

wts.plot = T, printout = F, bar.ylim = c(0,2))

efrontPlot is long and is posted at the class web site.  Note that it uses a 
special barplot.wts function to handle negative weights. 

1.8  EFFICIENT FRONTIERS

5/22/2013
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efrontMV = function(returns,cset = NULL,npoints = 10)
{

if(is.null(cset))
{mu = apply(returns,2,mean)
minmu = min(mu)
maxmu = max(mu)}
else
{minmu = minmu(returns,cset)
maxmu = .999*maxmu(returns,cset)}
p = ncol(returns)
efront = matrix(rep(0,npoints*(p+2)),ncol = p+2)
muvals = seq(minmu,maxmu,length.out = npoints)
for(i in 1:npoints)
{efront[i,] = mvo(returns,muvals[i],cset,wts.only = F)}
dimnames(efront)[[2]]=c("MU","SD",dimnames(returns)[[2]])
efront

}
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barplot.wts = function(x,legend.text = NULL,col = NULL,ylab =
NULL ,xlab = NULL, bar.ylim = NULL)

{
n = ncol(x); p = nrow(x)
xpos = (abs(x)+x)/2
xneg = (x-abs(x))/2
if(is.null(ylim))
{ymax <- max(colSums(xpos,na.rm=T))
ymin <- min(colSums(xneg,na.rm=T))
ylim = c(ymin,ymax)}
else {ylim = ylim}
barplot(xpos,legend.text = legend.text,col = col,ylab =

ylab,xlab = xlab, ylim = bar.ylim)
barplot(xneg,add = T,col = col)
abline(h=0)

}
x = cbind(c(.1,.3,.8,-.2),c(.2,.3,.2,.3))
barplot.wts(x,legend.text = T, col = topo.colors(4),ylab =

"WEIGHTS", xlab = "VOL",bar.ylim = c(0,2))

Special Barplot Function for Negative Weights
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library(xts)
source("constraint.sets.r")
source("mvo.constrained.r")
source("efront.constrained.r")

# Ex1.12 Unconstrained Efficient Frontier
efrontPlot(returns, rf = .003, npoints = 50,wts.plot =

T,bar.ylim = c(-1,4))

# Ex1.13 Long-Only Efficient Frontier
efrontPlot(returns, cset.lo, rf = .003, npoints = 50,

wts.plot = T)

# Ex1.14 Box Constraints Efficient Frontier
efrontPlot(returns, cset.box, rf = .003, npoints =

50,wts.plot = T)

# Ex1.15 Groups Constraints Efficient Frontier
efrontPlot(returns8, cset.groups, rf = .003, npoints =

50,wts.plot = T)

efront.examples.r
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Ex1.12 Fully-Invested Portfolios with Unlimited Shorting
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Ex1.13  Long-Only Portfolios

0.00 0.05 0.10 0.15 0.20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

MV EFFICIENT FRONTIER

VOL

M
U

MAT

EMN

LEG

AAPL

UTR
HB

BNK

APA

LNCR

BMET

SRmax =0.332
rf =0.003

BMET
LNCR
APA
BNK
HB
UTR
AAPL
LEG
EMN
MAT

VOL

W
EI

G
H

TS

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0



5/22/2013 Copyright R. Douglas Martin 106

Ex1.14 Box Constraints [3%,25%] Portfolios
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Ex1.15 Group Constraints Portfolios
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Use functions efront.qu and efrontQuPlot in the following 
script efront.qu.r.

Quadratic Utility Efficient Frontiers

5/22/2013

library(quadprog); library(xts)
source("barplot.wts.r");source("qu.r")
source("constraint.sets.r")
efrontQU = function(returns,cset = NULL,lambda = c(5,1,.1))
{

p = ncol(returns)
npoints = length(lambda)
efront = matrix(rep(0,npoints*(p+2)),ncol = p+2)
for(i in 1:npoints)
if(is.null(cset))
{efront[i,] = qu(returns,lambda[i],wts.only = F)}
else
{efront[i,] = qu(returns,cset,lambda[i],wts.only = F)}
dimnames(efront)[[2]]=c("MU","SD",dimnames(returns)[[2]])
efront

}
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efrontQuPlot = function(returns,cset = NULL,lambda =
c(10,5,.1), rf = NULL, wts.plot = T,
printout = F,bar.ylim = c(0,2))

{
if(is.null(cset))
{efront = efrontQU(returns,cset = NULL, lambda)}
else
{efront = efrontQU(returns,cset,lambda)}
if(printout) print(efront)
# Set smart x and y plotting region limits

. . . . 

#  The rest of this function is identical to efrontPlot.
#  The following commands produce the plots on next slide, 
#  which should be compared with Ex1.13. 

lambda = seq(20,.01,length.out = 50)
efrontQuPlot(returns, cset.lo, lambda, rf = .003,

wts.plot = T,bar.ylim = c(0,2))



5/22/2013 Copyright R. Douglas Martin 110

0.00 0.05 0.10 0.15 0.20

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

EFFICIENT FRONTIER

VOL

M
U

MAT

EMN

LEG

AAPL

UTR
HB

BNK

APA

LNCR

BMET

SRmax =0.332
rf =0.003

BMET
LNCR
APA
BNK
HB
UTR
AAPL
LEG
EMN
MAT

VOL

W
EI

G
H

TS

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0



Copyright R. Douglas Martin 111

Two equivalent approaches, both allowing short-selling: 

1) Maximize quadratic utility
2) Minimize risk with a mean return constraint

Key Result 1:  Two-fund theorem

Key Result 2:  Hyperbolic portfolio mean return versus 
volatility relationship

1A.1  NO-CASH MVO PORTFOLIOS

5/22/2013
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w w w

w ȝ w Ȉw

No-Cash Quadratic Utility Optimality

With no weight constraints the optimal weights are

5/22/2013

Maximize

1 1O� � �w Ȉ ȝ

N.B.  Full-investment implies that               .  But this in turn implies 
that                  .  .  But if                     this is not possible. You can only 
have full-investment with quadratic utility optimality if                     .

1O �c 1 Ȉ ȝ
1c  1 w

0O !

1 0�c �1 Ȉ ȝ
1 0�c !1 Ȉ ȝ
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subject to

1( )
2

U Oc c � �w w ȝ w Ȉw

1 c1 w

Lagrangian:
1( ) ( 1)
2

L O Jc c c � � � � �w w ȝ w Ȉw 1 w

( )dL
d

O J � � � �  
w ȝ Ȉw 1 0

w

� �1 1        O J� ��  � � � �w Ȉ ȝ 1

(full investment)

5/22/2013

So try optimizing with the full-investment constraint:

Maximize



Copyright R. Douglas Martin 114

Two-Fund Separation Theorem

� � � �
1 1

1 1 1 1
1 11O O

� �
� � � �

� �
c c � � �

c c
Ȉ ȝ Ȉ 1

w 1 Ȉ ȝ 1 Ȉ ȝ
1 Ȉ ȝ 1 Ȉ 1

5/22/2013

1 1 1 1 1

1 1

1 ( ) ( )
O

� � � � �

� �

c c�
 �

c c
Ȉ 1 1 Ȉ 1 Ȉ ȝ 1 Ȉ ȝ Ȉ 1

w
1 Ȉ 1 1 Ȉ 1

This form is given in QHS 2.2.2 with              the mean returns forecast.oȝ f

Gw GMVw

Solving for the Lagrange multiplier     and rearranging gives the:J

Alternate form:
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subject to

min c
w

w Ȉw

( )

( )

   
1       

PPc  
c  

w ȝ
w 1

specified by investor

full investment

5/22/2013

No-Cash MVO with Mean Return Constraint 

� � � � � �1 2

Constraint 1 Constraint 2

1 1
2 PL O P Oc c c � � � �w w Ȉw w ȝ w 1��	�
 ��	�


� � 1 1
1 20           d L
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1 1
1 2O O� � �w Ȉ ȝ Ȉ 1

5/22/2013

    1 PPc c  w ȝ w 1andNow apply the two  constraints                                       to the
optimal weight vector

and solve for the two Lagrange multipliers:

where 1 1

1 2

                 
                 

a b
c d bc a

� �

�

c c  

c  �

ȝ Ȉ 1 ȝ Ȉ ȝ
1 Ȉ 1

1 2              P Pc a b a
d d
P PO O� � � �

  



Copyright R. Douglas Martin 117

Note that as you vary       arbitrarily you will typically get some
that correspond to short selling.  

PP 0iw �
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Proposition 1: The optimal weight vector may written as 

Proof:  Exercise.

1
1

� z Ȉ 1 1
2

� z Ȉ ȝSetting                     and                    you can write the above as:

� � � �1 1 2 2 2 1
1 1        b a c a
d d

 � � �  � � �g z z g z z

1 2opt PP �w g g

� � � �1 1 1 1
1 2

1 1        b a c a
d d

� � � � � � �  � � �g Ȉ 1 Ȉ ȝ g Ȉ ȝ Ȉ 1

where
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Proposition 2: Let ,      be any two efficient frontier portfolios.

Then

1P

� �1 2 1 2

1 2

cov ,

1
P P P P

P P

r r

c a a
c d c c

P P

c 

§ ·§ · � � �¨ ¸¨ ¸
© ¹© ¹

w Ȉw

2P

� �
2

2 1cov ,P P P P
c ar r

c d c
V P§ ·  � �¨ ¸

© ¹

The special case of the above with               gives the portfolio 
frontier formula:

Proof:     Exercise (Hint: use Proposition 1)
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1 2P P 
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Re-arranging gives

Recall that the equation of a hyperbola centered at is:

2

2

2 1
1

P
P

a
c

c d c

P
V

§ ·�¨ ¸© ¹
�  

PVPP

2 2

2 2 1,     x y x y x y By x
A B A B A B A

§ ·§ ·�  � �   r¨ ¸¨ ¸
© ¹© ¹

with asymptotes

Thus        versus          is a hyperbola centered at                   , with 
asymptotes

 P P
a d
c c

P V r

(0 , 0 )

(0, / )a c
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The Portfolio Frontier is a Hyperbola
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 P Pa c d cP V �

PP

PV

MV a cP  

 P Pa c d cP V �

1MV cV  

2 2
2    for 1P P P

a d d c
c c c

P V V r � t
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In Summary:

A hyperbola.  
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Contours of constant quadratic utility:

2( , )
2P P P PU cOP V P V �  

2        
2P Pc OP V�  �

       P
P

P

d
d
P

O V
V

�  �
PV

PP

c

slope =

fr

/T TP V

Slope of constant expected utility contour line at all tangency points
is equal to the maximum Sharpe ratio (SR):

SR     P P T
P T

P P T

d
d
P P PO V
V V V

 �    � 2

1P
T

P P

SRPO
V V

  

.T

A way to back
out risk aversion
for any linear
efficient frontier
portfolio !
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1A.2 Optimal Risk Aversion Parameter
Alternate Derivation


