Package ‘PortfolioAnalytics’

August 26, 2012

Type Package

Title Portfolio Analysis, including Numeric Methods for Optimization of Portfolios
Version 0.8.0

Date 2012-06-25

Author Kiris Boudt, Peter Carl, Brian G. Peterson

Contributors Hezky Varon, Guy Yollin

Maintainer Brian G. Peterson <brian@braverock.com>

Description Portfolio optimization and analysis routines and graphics.

Depends R (>=2.14.0),zoo,xts (>= 0.8),PerformanceAnalytics (>= 1.0.0)

Suggests
quantmod,DEoptim,foreach,fGarch,Rglpk,quadprog, ROL,ROIL.plugin.glpk,ROI.plugin.quadprog,pso,GenSA

License GPL
Copyright (c) 2004-2012

Collate
"charts. DE.R’’charts.RP.R’’constrained_objective.R’’constraints.R’’constraints_ ROL.R’extract.efficient.frontier.R’’extrac

R topics documented:

add.objective L L e e e e e 2
CCCgarch. MM e 3
chart.ScattertDE 4
chart.ScatterRP 4
chart Weights. DE 5
chart Weights.RP 6
charts DE e e e e 7
charts RP e 7
constrained_objective Lo 8

2 add.objective
CONSLIAINt o o ittt e e e e e 9
constraint ROI e 10
extractefficient.frontiero o 11
eXtractStats e e e e e 12
extractStats.optimize.portfolio.DEoptim 12
extractStats.optimize.portfolio.parallel 13
extractStats.optimize.portfolio.randomo 13
extractStats.optimize.portfolio.ROI oo 14
extractWeights.rebal L. 14
GENETALESEUENCE . . « « v v v vt e e e e e e e e e e e e e e e e e e 15
INdeXes e 15
IS.CONSIIAINE o ittt e e e e e e e e e e e e 16
1S.ODJECHIVE L e 16
name.replace L e e e e e e e 17
ODJECHIVE o o e e e e e 17
optimize.portfolio 18
optimize.portfolio.parallel 19
optimize.portfolio.rebalancingo 21
plot.optimize.portfolio L. e 22
plot.optimize.portfolio.DEoptimo oo 23
plot.optimize.portfolio.randomo o 23
portfolio_risk_objective L. 24
randomize_portfolio 25
random_portfolios e e e 25
random_walk_portfolios 26
etUrn_ObjectiVve e e e 27
risk_budget_objective L 27
set.portfolio.moments 28
summary.optimize.portfolio.rebalancing L 0oL 29
trailingFUN 0 e 29
update.constraint L. e e e 30

Index 31

add.objective General interface for adding optimization objectives, including risk,
return, and risk budget

Description

This function is the main function for adding and updating business objectives in an object of type
constraint.

Usage

add.objective(constraints, type, name, arguments = NULL,

enabled = FALSE, ..., indexnum = NULL)

CCCgarch.MM 3

Arguments
constraints an object of type "constraints" to add the objective to, specifying the constraints
for the optimization, see constraint
type character type of the objective to add or update, currently ’return’,’risk’, or
‘risk_budget’
name name of the objective, should correspond to a function, though we will try to
make allowances
arguments default arguments to be passed to an objective function when executed
enabled TRUE/FALSE
any other passthru parameters
indexnum if you are updating a specific constraint, the index number in the $objectives list
to update
Details

In general, you will define your objective as one of three types: ’return’, ’risk’, or ’risk_budget’.
These have special handling and intelligent defaults for dealing with the function most likely to be
used as objectives, including mean, median, VaR, ES, etc.

Author(s)

Brian G. Peterson

See Also
constraint
CCCgarch.MM compute comoments for use by lower level optimization functions
when the conditional covariance matrix is a CCC GARCH model
Description

it first estimates the conditional GARCH variances, then filters out the time-varying volatility and
estimates the higher order comoments on the innovations rescaled such that their unconditional
covariance matrix is the conditional covariance matrix forecast

Usage
CCCgarch.MM(R, momentargs = NULL, ...)
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
momentargs list containing arguments to be passed down to lower level functions, default

NULL

any other passthru parameters

4 chart.Scatter.RP

chart.Scatter.DE classic risk return scatter of DEoptim results

Description

classic risk return scatter of DEoptim results

Usage
chart.Scatter.DE(DE, R = NULL, constraints = NULL,
neighbors = NULL, return.col = "mean”, risk.col = "ES”,
., element.color = "darkgray", cex.axis = 0.8)
Arguments
DE set of portfolios created by optimize.portfolio
R an optional an xts, vector, matrix, data frame, timeSeries or zoo object of asset
returns, used to recalulate the objective function where required
constraints an object of type "constraints" specifying the constraints for the optimization,
see constraint
neighbors set of "neighbor’ portfolios to overplot, see Details in charts.DE
return.col string matching the objective of a "return’ objective, on vertical axis
risk.col string matching the objective of a ’risk’ objective, on horizontal axis

any other passthru parameters

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex

element.color color for the default plot scatter points

See Also

optimize.portfolio

chart.Scatter.RP classic risk return scatter of random portfolios

Description

classic risk return scatter of random portfolios

Usage

chart.Scatter.RP(RP, neighbors = NULL,
return.col = "mean”, risk.col = "ES", ...,
element.color = "darkgray"”, cex.axis = 0.8)

chart. Weights.DE

Arguments

RP
neighbors
return.col

risk.col

cex.axis
element.color

See Also

set of portfolios created by optimize.portfolio

set of "neighbor’ portfolios to overplot, see Details

string matching the objective of a 'return’ objective, on vertical axis
string matching the objective of a ’risk’ objective, on horizontal axis
any other passthru parameters

The magnification to be used for axis annotation relative to the current setting
of cex

color for the default plot scatter points

optimize.portfolio

chart.Weights.DE

boxplot of the weight distributions in the random portfolios

Description

boxplot of the weight distributions in the random portfolios

Usage

chart.Weights.DE(DE, neighbors = NULL, ...,
main = "Weights"”, las = 3, xlab = NULL, cex.lab =1,

element.color = "darkgray"”, cex.axis = 0.8)
Arguments

DE set of random portfolios created by optimize.portfolio

neighbors set of "neighbor’ portfolios to overplot

las numeric in {0,1,2,3}; the style of axis labels
0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

xlab a title for the x axis: see title

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex

cex.axis The magnification to be used for axis annotation relative to the current setting

element.color

main

of cex
color for the default plot lines
any other passthru parameters

an overall title for the plot: see title

6 chart. Weights.RP

See Also

optimize.portfolio

chart.Weights.RP boxplot of the weight distributions in the random portfolios

Description

boxplot of the weight distributions in the random portfolios

Usage

chart.Weights.RP(RP, neighbors = NULL, ...,
main = "Weights"”, las = 3, xlab = NULL, cex.lab = 1,

element.color = "darkgray”, cex.axis = 0.8)
Arguments
RP set of random portfolios created by optimize.portfolio
neighbors set of "neighbor’ portfolios to overplot
las numeric in {0,1,2,3}; the style of axis labels

0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,

3: always vertical.

xlab a title for the x axis: see title

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex

element.color color for the default plot lines
any other passthru parameters

main an overall title for the plot: see title

See Also

optimize.portfolio

charts.DE 7

charts.DE scatter and weights chart for random portfolios

Description

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

Usage
charts.DE(DE, risk.col, return.col, neighbors = NULL,
main = "DEoptim.Portfolios”, ...)
Arguments
DE set of random portfolios created by optimize.portfolio

any other passthru parameters

risk.col string name of column to use for risk (horizontal axis)
return.col string name of column to use for returns (vertical axis)
neighbors set of "neighbor portfolios to overplot
main an overall title for the plot: see title

See Also

optimize.portfolio extractStats

charts.RP scatter and weights chart for random portfolios

Description

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

8 constrained_objective

Usage
charts.RP(RP, risk.col, return.col, neighbors = NULL,
main = "Random.Portfolios”, ...)
Arguments
RP set of random portfolios created by optimize.portfolio

any other passthru parameters

risk.col string name of column to use for risk (horizontal axis)
return.col string name of column to use for returns (vertical axis)
neighbors set of "neighbor portfolios to overplot
main an overall title for the plot: see title

See Also

optimize.portfolio extractStats

constrained_objective function to calculate a numeric return value for a portfolio based on a
set of constraints

Description
function to calculate a numeric return value for a portfolio based on a set of constraints, we’ll try to
make as few assumptions as possible, and only run objectives that are required by the user

Usage

constrained_objective(w, R, constraints, ...,
trace = FALSE, normalize = TRUE, storage = FALSE)

Arguments

R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

w a vector of weights to test

constraints an object of type "constraints" specifying the constraints for the optimization,
see constraint
any other passthru parameters

trace TRUE/FALSE whether to include debugging and additional detail in the output
list

normalize TRUE/FALSE whether to normalize results to min/max sum (TRUE), or let the
optimizer penalize portfolios that do not conform (FALSE)

storage TRUE/FALSE default TRUE for DEoptim with trace, otherwise FALSE. not

typically user-called

constraint 9

Details

If the user has passed in either min_sum or max_sum constraints for the portfolio, or both, and
are using a numerical optimization method like DEoptim, and normalize=TRUE, the default, we’ll
normalize the weights passed in to whichever boundary condition has been violated. If using ran-
dom portfolios, all the portfolios generated will meet the constraints by construction. NOTE: this
means that the weights produced by a numeric optimization algorithm like DEoptim might violate
your constraints, so you’d need to renormalize them after optimizing We apply the same normal-
ization in optimize.portfolio so that the weights you see have been normalized to min_sum if
the generated portfolio is smaller than min_sum or max_sum if the generated portfolio is larger
than max_sum. This normalization increases the speed of optimization and convergence by several
orders of magnitude in many cases.

You may find that for some portfolios, normalization is not desirable, if the algorithm cannot find
a direction in which to move to head towards an optimal portfolio. In these cases, it may be best
to set normalize=FALSE, and penalize the portfolios if the sum of the weighting vector lies outside
the min_sum and/or max_sum.

Whether or not we normalize the weights using min_sum and max_sum, and are using a numerical
optimization engine like DEoptim, we will penalize portfolios that violate weight constraints in
much the same way we penalize other constraints. If a min_sum/max_sum normalization has not
occurred, convergence can take a very long time. We currently do not allow for a non-normalized
full investment constraint. Future version of this function could include this additional constraint
penalty.

When you are optimizing a return objective, you must specify a negative multiplier for the return
objective so that the function will maximize return. If you specify a target return, any return less
than your target will be penalized. If you do not specify a target return, you may need to specify
a negative VTR (value to reach) , or the function will not converge. Try the maximum expected
return times the multiplier (e.g. -1 or -10). Adding a return objective defaults the multiplier to -1.

Additional parameters for random portfolios or DEoptim.control may be passed in via...

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson

See Also

constraint, objective, DEoptim.control

constraint constructor for class constraint

Description

constructor for class constraint

10 constraint_ ROI

Usage
constraint(assets = NULL, ..., min, max, min_mult,
max_mult, min_sum = 0.99, max_sum = 1.01,
weight_seq = NULL)
Arguments
assets number of assets, or optionally a named vector of assets specifying seed weights
any other passthru parameters
min numeric or named vector specifying minimum weight box constraints
max numeric or named vector specifying minimum weight box constraints
min_mult numeric or named vector specifying minimum multiplier box constraint from
seed weight in assets
max_mult numeric or named vector specifying maximum multiplier box constraint from
seed weight in assets
min_sum minimum sum of all asset weights, default .99
max_sum maximum sum of all asset weights, default 1.01
weight_seq seed sequence of weights, see generatesequence
Author(s)

Peter Carl and Brian G. Peterson

Examples

exconstr <- constraint(assets=10, min_sum=1, max_sum=1, min=.01, max=.35, weight_seq=generatesequence())

constraint_ROI constructor for class constraint_ROI

Description

constructor for class constraint_ ROI

Usage

constraint_ROI(assets = NULL, op.problem,
solver = c("glpk"”, "quadprog"”), weight_seq = NULL)

Arguments
assets number of assets, or optionally a named vector of assets specifying seed weights
op.problem an object of type "OP" (optimization problem, of ROI) specifying the complete
optimization problem, see ROI help pages for proper construction of OP object.
solver string argument for what solver package to use, must have ROI plugin installed

for that solver. Currently support is for glpk and quadprog.
weight_seq seed sequence of weights, see generatesequence

extract.efficient.frontier 11

Author(s)

Hezky Varon

extract.efficient.frontier
extract the efficient frontier of portfolios that meet your objectives over
a range of risks

Description

note that this function will be extremely sensitive to the objectives in your constraint object. It
will be especially obvious if you are looking at a risk budget objective and your return preference
is not set high enough.

Usage

extract.efficient.frontier(portfolios = NULL,
match.col = "ES", from = 0, to = 1, by = 0.005, ...,
R = NULL, constraints = NULL,

optimize_method = "random")
Arguments
portfolios set of portfolios as generated by extractStats
from minimum value of the sequence
to maximum value of the sequence
by number to increment the sequence by
match.col string name of column to use for risk (horizontal axis)

any other passthru parameters
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

constraints an object of type "constraints" specifying the constraints for the optimization,
see constraint

optimize_method
one of "DEoptim" or "random"

Details

If you do not have a set of portfolios to extract from, portfolios may be generated automatically,
which would take a very long time.

12 extractStats.optimize.portfolio. DEoptim

extractStats extract some stats and weights from a portfolio run via
optimize.portfolio

Description

This function will dispatch to the appropriate class handler based on the input class of the opti-
mize.portfolio output object

Usage
extractStats(object, prefix = NULL, ...)
Arguments
object list returned by optimize.portfolio
prefix prefix to add to output row names
any other passthru parameters
See Also

optimize.portfolio

extractStats.optimize.portfolio.DEoptim
extract some stats from a portfolio list run with DEoptim via
optimize.portfolio

Description

This function will take everything in the objective_measures slot and unlist it. This may produce
a very large number of columns or strange column names.

Usage
extractStats.optimize.portfolio.DEoptim(object,
prefix = NULL, ...)
Arguments
object list returned by optimize.portfolio
prefix prefix to add to output row names

any other passthru parameters

See Also

optimize.portfolio

extractStats.optimize.portfolio.parallel 13

extractStats.optimize.portfolio.parallel
extract some stats from a portfolio list run via foreach in opti-
mize.portfolio.parallel

Description

This function will take everything in the objective_measures slot and unlist it. This may produce
a very large number of columns or strange column names.

Usage
extractStats.optimize.portfolio.parallel(object,
prefix = NULL, ...)
Arguments
object list returned by optimize.portfolio
prefix prefix to add to output row names

any other passthru parameters

See Also

optimize.portfolio optimize.portfolio.parallel extractStats

extractStats.optimize.portfolio.random
extract stats from random portfolio results

Description

This just flattens the $random_portfolio_objective_results part of the object

Usage
extractStats.optimize.portfolio.random(object,
prefix = NULL, ...)
Arguments
object list returned by optimize.portfolio
prefix prefix to add to output row names

any other passthru parameters

See Also

optimize.portfolio random_portfolios extractStats

14 extractWeights.rebal

extractStats.optimize.portfolio.ROI
extract some stats from a portfolio list run with ROI via
optimize.portfolio

Description

This function will take everything in the objective_measures slot and unlist it. This may produce
a very large number of columns or strange column names.

Usage
extractStats.optimize.portfolio.ROI(object,
prefix = NULL, ...)
Arguments
object list returned by optimize.portfolio
prefix prefix to add to output row names

any other passthru parameters

extractWeights.rebal extract time series of weights from output of optimize.portfolio

Description
optimize.portfolio.rebalancing outputs a list of optimize.portfolio objects, one for each
rebalancing period

Usage

extractWeights.rebal(RebalResults, ...)

Arguments

RebalResults object of type optimize.portfolio.rebalancing to extract weights from

any other passthru parameters

Details

The output list is indexed by the dates of the rebalancing periods, as determined by endpoints

See Also

optimize.portfolio.rebalancing

generatesequence 15

generatesequence create a sequence of possible weights for random or brute force port-
folios

Description

This function creates the sequence of min<->max weights for use by random or brute force opti-
mization engines.

Usage

generatesequence(min = 0.01, max = 1, by = min/max,
rounding = 3)

Arguments

min minimum value of the sequence

max maximum value of the sequence

by number to increment the sequence by

rounding integrer how many decimals should we round to
Details

The sequence created is not constrained by asset.

Author(s)

Peter Carl, Brian G. Peterson

See Also

constraint, objective

indexes Six Major Economic Indexes

Description
Monthly data of five indexes beginning on 2000-01-31 and ending 2009-12-31. The indexes are:
US Bonds, US Equities, International Equities, Commodities, US T-Bills, and Inflation

Usage

data(indexes)

16

Format

CSV converted into xts object with montly observations
Examples
data(indexes)

#preview the data
head(indexes)

#summary period statistics
summary (indexes)

is.objective

is.constraint check function for constraints

Description

check function for constraints

Usage

is.constraint(x)

Arguments

X object to test for type constraint

Author(s)

bpeterson

is.objective check class of an objective object

Description

check class of an objective object

Usage

is.objective(x)

Arguments

X an object potentially of type ’objective’ to test

name.replace 17

Author(s)

Brian G. Peterson

name.replace utility function to replace awkward named from unlist

Description

utility function to replace awkward named from unlist

Usage

name.replace(rnames)

Arguments
rnames character vector of names to check for cleanup
objective constructor for class ’objective’
Description

constructor for class ’objective’

Usage
objective(name, target = NULL, arguments,
enabled = FALSE, ..., multiplier =1,
objclass = "objective”)
Arguments
name name of the objective which will be used to call a function, like "ES’, *VaR’,
’mean’
target univariate target for the objective, default NULL
arguments default arguments to be passed to an objective function when executed
enabled TRUE/FALSE
any other passthrough parameters
multiplier multiplier to apply to the objective, usually 1 or -1
objclass string class to apply, default *objective’
Author(s)

Brian G. Peterson

18 optimize.portfolio

optimize.portfolio wrapper for constrained optimization of portfolios

Description

This function aims to provide a wrapper for constrained optimization of portfolios that allows the
user to specify box constraints and business objectives.

Usage

optimize.portfolio(R, constraints,
optimize_method = c(”"DEoptim”, "random”, "ROI", "ROI_old", "pso"”, "GenSA"),

search_size = 20000, trace = FALSE, ..., rp = NULL,
momentFUN = "set.portfolio.moments")
Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
constraints an object of type "constraints" specifying the constraints for the optimization,
see constraint, if using closed for solver, need to pass a constraint_ROI
object.

optimize_method
one of "DEoptim", "random", "ROI","ROI_old", "pso", "GenSA". For using
ROI_old, need to use a constraint_ROI object in constraints. For using ROI,
pass standard constratint object in constraints argument. Presently, ROI
has plugins for quadprog and Rglpk.

search_size integer, how many portfolios to test, default 20,000

trace TRUE/FALSE if TRUE will attempt to return additional information on the path
or portfolios searched

any other passthru parameters

rp matrix of random portfolio weights, default NULL, mostly for automated use
by rebalancing optimization or repeated tests on same portfolios
momentFUN the name of a function to call to set portfolio moments, default set.portfolio.moments
Details

This function currently supports DEoptim and random portfolios as back ends. Additional back end
contributions for Rmetrics, ghyp, etc. would be welcome.

When using random portfolios, search_size is precisely that, how many portfolios to test. You need
to make sure to set your feasible weights in generatesequence to make sure you have search_size
unique portfolios to test, typically by manipulating the by’ parameter to select something smaller
than .01 (I often use .002, as .001 seems like overkill)

When using DE, search_size is decomposed into two other parameters which it interacts with, NP
and itermax.

Doug
Comment on Text
I would re-write all help files to have Details start with the vanilla stuff, i.e., standard general inequality constraints, as in (1), (2), etc., below and then bring in all the stuff on DEOptim and random portfolios (as it is more complicated and pedgogically will not be the starting place - people just beginning need to walk before run)

Doug
Comment on Text
I need to find out the basic differences between ROI and ROI_old.

optimize.portfolio.parallel 19

NP, the number of members in each population, is set to cap at 2000 in DEoptim, and by default is
the number of parameters (assets/weights) *10.

itermax, if not passed in dots, defaults to the number of parameters (assets/weights) *50.
When using GenSA and want to set verbose=TRUE, instead use trace.

The extension to ROI solves a limit type of convex optimization problems: 1) Maxmimize portfolio
return subject bex-eenstraints on weights 2) Minimize portfolio variance subject to bex constraints
(otherwise known as global minimum variance portfolio) 3) Minimize portfolio variance subject
to bexj constraints and a desired portfolio returay}) Maximize quadratic utility subject to box con-
straints and risk aversion parameter (this is passed into optimize.portfolio as as added argument
to the constraints object) 5) Mean CVaR optiimization subject to box constraints and target port-
folio return Lastly, because these convex optimization problem are standardized, there is no need
for a penalty term. Therefore, the multiplier argument in add.objective passed into the com-
plete constraint object are ingnored by the solver. ROI also can solve quadratic and linear problems
with group constraints by added a groups argument into the constraints object. This argument is
a vector with each of its elements the number of assets per group. The group constraints, cLO and
cUP, are also added to the constraints object.

For example, if you have 9 assets, and would like to require that the the first 3 assets are in one
group, the second 3 are in another, and the third are in another, then you add the grouping by
constraints$groups <- ¢(3,3,3). To apply the constraints that the first group must com-
pose of at least 20 group 15 group should compose of more that 50 you would add the lower
group constraint as constraints$cLO <- ¢(0.20, 0.15, 0.10) and the upper constraints as
constraints$cUP <- rep(0.5,3). These group constraint can be set for all five optimization
problems listed above.

If you would like to interface with optimize.portfolio using matrix formulations, then use
ROI_old.

Value
a list containing the optimal weights, some summary statistics, the function call, and optionally
trace information

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson

optimize.portfolio.parallel
execute multiple optimize.portfolio calls, presumably in parallel

Description

TODO write function to check sensitivity of optimal results by using optimize.portfolio.parallel
results

Doug
Highlight

Doug
Highlight

Doug
Cross-Out

Doug
Replacement Text
general linear inequality constraints

Doug
Cross-Out

Doug
Replacement Text
general linear inequality

Doug
Cross-Out

Doug
Replacement Text
general linear inequality

Doug
Cross-Out

Doug
Replacement Text
return (program will call (1) and (2) and check for feasibility of desired portfolio return and return error message if infeasible with max and min feasible mean return)

20 optimize.portfolio.parallel

Usage

optimize.portfolio.parallel(R, constraints,
optimize_method = c("DEoptim”, "random”),
search_size = 20000, trace = FALSE, ..., nodes = 4)

Arguments

R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

constraints an object of type "constraints" specifying the constraints for the optimization,
see constraint

optimize_method
one of "DEoptim" or "random"

search_size integer, how many portfolios to test, default 20,000

trace TRUE/FALSE if TRUE will attempt to return additional information on the path
or portfolios searched

any other passthru parameters

nodes how many processes to run in the foreach loop, default 4

Details

This function will not speed up optimization!

This function exists to run multiple copies of optimize.portfolio, presumabley in parallel using
foreach.

This is typically done to test your parameter settings, specifically total population size, but also
possibly to help tune your convergence settings, number of generations, stopping criteria, etc.

If you want to use all the cores on your multi-core computer, use the parallel version of the apppro-
priate optimization engine, not this function.

Value

a list containing the optimal weights, some summary statistics, the function call, and optionally
trace information

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson

optimize.portfolio.rebalancing 21

optimize.portfolio.rebalancing
portfolio optimization with support for rebalancing or rolling periods

Description

This function may eventually be wrapped into optimize.portfolio

Usage

optimize.portfolio.rebalancing(R, constraints,
optimize_method = c("DEoptim”, "random”, "ROI"),
search_size = 20000, trace = FALSE, ..., rp = NULL,
rebalance_on = NULL, training_period = NULL,
trailing_periods = NULL)

Arguments
R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
constraints an object of type "constraints" specifying the constraints for the optimization,

see constraint
optimize_method

one of "DEoptim" or "random"
search_size integer, how many portfolios to test, default 20,000

trace TRUE/FALSE if TRUE will attempt to return additional information on the path
or portfolios searched

any other passthru parameters
rp a set of random portfolios passed into the function, to prevent recalculation

rebalance_on a periodicity as returned by xts function periodicity and usable by endpoints
training_period
period to use as training in the front of the data
trailing_periods
if set, an integer with the number of periods to roll over, default NULL will run
from inception

Details

For now, we’ll set the rebalancing periods here, though I think they should eventually be part of the
constraints object

This function is massively parallel, and will require ’foreach’ and we suggest that you register a
parallel backend.
Value

a list containing the optimal weights, some summary statistics, the function call, and optionally
trace information

Doug
Comment on Text
I don't agree with this. One often back-tests several strategies simultaneously, each with its own constraint set, and there is no need to repeat the rebalancing periods in the constraint objects.

22 plot.optimize.portfolio

Author(s)

Kris Boudt, Peter Carl, Brian G. Peterson

plot.optimize.portfolio
plot method for optimize.portfolio output

Description

scatter and weights chart for portfolio optimization

Usage
plot.optimize.portfolio(x, ..., return.col = "mean”,
risk.col = "ES", neighbors = NULL,
main = "optimized portfolio plot")
Arguments
X set of portfolios created by optimize.portfolio
any other passthru parameters
risk.col string name of column to use for risk (horizontal axis)
return.col string name of column to use for returns (vertical axis)
neighbors set of "neighbor portfolios to overplot
main an overall title for the plot: see title
Details

this is a fallback that will be called for classes of portfolio that do not have specific pre-existing plot
methods.

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

plot.optimize.portfolio.DEoptim 23

plot.optimize.portfolio.DEoptim
plot method for optimize.portfolio.DEoptim output

Description

scatter and weights chart for DEoptim portfolio optimizations run with trace=TRUE

Usage

plot.optimize.portfolio.DEoptim(x, ...,
return.col = "mean”, risk.col = "ES", neighbors = NULL,
main = "optimized portfolio plot")

Arguments
X set of portfolios created by optimize.portfolio
any other passthru parameters
risk.col string name of column to use for risk (horizontal axis)
return.col string name of column to use for returns (vertical axis)
neighbors set of "neighbor portfolios to overplot
main an overall title for the plot: see title
Details

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

plot.optimize.portfolio.random
plot method for optimize.portfolio.random output

Description

scatter and weights chart for random portfolios

Usage

plot.optimize.portfolio.random(x, ...,
return.col = "mean”, risk.col = "ES", neighbors = NULL,
main = "optimized portfolio plot”)

Doug
Comment on Text
Can this be a generic plot function that recognizes the class of the optimization result object, where the class includes the solver type?

24 portfolio_risk_objective

Arguments
X set of portfolios created by optimize.portfolio
any other passthru parameters
risk.col string name of column to use for risk (horizontal axis)
return.col string name of column to use for returns (vertical axis)
neighbors set of "neighbor portfolios to overplot
main an overall title for the plot: see title
Details

neighbors may be specified in three ways. The first is as a single number of neighbors. This will
extract the neighbors closest portfolios in terms of the out numerical statistic. The second method
consists of a numeric vector for neighbors. This will extract the neighbors with portfolio index
numbers that correspond to the vector contents. The third method for specifying neighbors is to
pass in a matrix. This matrix should look like the output of extractStats, and should contain
risk.col,return.col, and weights columns all properly named.

portfolio_risk_objective
constructor for class portfolio_risk_objective

Description

if target is null, we’ll try to minimize the risk metric

Usage
portfolio_risk_objective(name, target = NULL,
arguments = NULL, multiplier = 1, enabled = FALSE, ...)
Arguments
name name of the objective, should correspond to a function, though we will try to
make allowances
target univariate target for the objective
arguments default arguments to be passed to an objective function when executed
multiplier multiplier to apply to the objective, usually 1 or -1
enabled TRUE/FALSE

any other passthru parameters

Author(s)

Brian G. Peterson

randomize_portfolio 25

randomize_portfolio generate random permutations of a portfolio seed meeting your con-
straints on the weights of each asset

Description

generate random permutations of a portfolio seed meeting your constraints on the weights of each
asset

Usage

randomize_portfolio(rpconstraints,
max_permutations = 200, rounding = 3)

Arguments

rpconstraints an object of type "constraints" specifying the constraints for the optimization,
see constraint

max_permutations
integer: maximum number of iterations to try for a valid portfolio, default 200

rounding integer how many decimals should we round to

Value

named weighting vector

Author(s)

Peter Carl, Brian G. Peterson, (based on an idea by Pat Burns)

random_portfolios generate an arbitary number of constrained random portfolios

Description

repeatedly calls randomize_portfolio to generate an arbitrary number of constrained random
portfolios.

Usage

random_portfolios(rpconstraints, permutations = 100, ...)

26 random_walk_portfolios

Arguments

rpconstraints an object of type "constraints" specifying the constraints for the optimization,
see constraint

permutations integer: number of unique constrained random portfolios to generate

any other passthru parameters

Value

matrix of random portfolio weights

Author(s)

Peter Carl, Brian G. Peterson, (based on an idea by Pat Burns)

See Also

constraint, objective, randomize_portfolio

Examples

rpconstraint<-constraint(assets=10, min_mult=-Inf, max_mult=Inf, min_sum=.99, max_sum=1.01, min=.01, max=.4, weig
rp<- random_portfolios(rpconstraints=rpconstraint,permutations=1000)
head(rp)

random_walk_portfolios
deprecated random portfolios wrapper until we write a random trades
function

Description

deprecated random portfolios wrapper until we write a random trades function

Usage

random_walk_portfolios(...)

Arguments

any other passthru parameters

Author(s)

bpeterson

return_objective 27

return_objective constructor for class return_objective

Description

if target is null, we’ll try to maximize the return metric

Usage
return_objective(name, target = NULL, arguments = NULL,
multiplier = -1, enabled = FALSE, ...)
Arguments
name name of the objective, should correspond to a function, though we will try to
make allowances
target univariate target for the objective
arguments default arguments to be passed to an objective function when executed
multiplier multiplier to apply to the objective, usually 1 or -1
enabled TRUE/FALSE

any other passthru parameters

Details

if target is set, we’ll try to meet or exceed the metric, penalizing a shortfall

Author(s)

Brian G. Peterson

risk_budget_objective constructor for class risk_budget_objective

Description

constructor for class risk_budget_objective

Usage

risk_budget_objective(assets, name, target = NULL,
arguments = NULL, multiplier = 1, enabled = FALSE, ...,
min_prisk, max_prisk, min_concentration = FALSE,
min_difference = FALSE)

28 set.portfolio.moments

Arguments

assets vector of assets to use, should come from constraints object

name name of the objective, should correspond to a function, though we will try to
make allowances

target univariate target for the objective

arguments default arguments to be passed to an objective function when executed

multiplier multiplier to apply to the objective, usually 1 or -1

enabled TRUE/FALSE
any other passthru parameters

min_prisk minimum percentage contribution to risk

max_prisk maximum percentage contribution to risk

min_concentration
TRUE/FALSE whether to minimize concentration, default FALSE, always TRUE
if min_prisk and max_prisk are NULL

min_difference TRUE/FALSE whether to minimize difference between concentration, default
FALSE

Author(s)

Brian G. Peterson

set.portfolio.moments set portfolio moments for use by lower level optimization functions

Description

set portfolio moments for use by lower level optimization functions

Usage
set.portfolio.moments(R, constraints, momentargs = NULL,
»)

Arguments

R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

constraints an object of type "constraints" specifying the constraints for the optimization,

see constraint
momentargs list containing arguments to be passed down to lower level functions, default

NULL

any other passthru parameters

summary.optimize.portfolio.rebalancing

29

summary.optimize.portfolio.rebalancing
summary method for optimize.portfolio.rebalancing

Description

summary method for optimize.portfolio.rebalancing

Usage
summary.optimize.portfolio.rebalancing(object, ...)
Arguments
object object of type optimize.portfolio.rebalancing
any other passthru parameters
trailingFUN apply a function over a configurable trailing period
Description

this function is primarily designed for use with portfolio functions passing 'x’ or 'R’ and weights,

but may be usable for other things as well, see Exmample for a vector example.

Usage
trailingFUN(R, weights, n = 0, FUN, FUNargs = NULL, ...)

Arguments

R an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

weights a vector of weights to test

any other passthru parameters

n numeric number of trailing periods

FUN string describing the function to be called

FUNargs list describing any additional arguments
Details

called with e.g.

trailingFUN(seq(1:100), weights=NULL, n=12, FUN="mean’,FUNargs=list())

30 update.constraint

update.constraint function for updating constrints, not well tested, may be broken

Description

can we use the generic update.default function?

Usage
update.constraint(object, ...)
Arguments
object object of type constraint to update
any other passthru parameters, used to call constraint
Author(s)

bpeterson

Index

+Topic datasets
indexes, 15

add.objective, 2, 19

CCCgarch.MM, 3
chart.Scatter.
chart.Scatter.
chart.Weights.
chart.Weights.
charts.DE, 4,7
charts.RP, 7
constrained_objective, 8
constraint, 2—4,8,9,9, 11, 15, 18, 20, 21,
25, 26, 28, 30
constraint_ROI, 10, I8

DEoptim.control, 9

extract.efficient.frontier, 11
extractStats, 7, 8, 11,12, 13, 22-24
extractStats.optimize.portfolio.DEoptim,
12
extractStats.optimize.portfolio.parallel
13
extractStats.optimize.portfolio.random,
13
extractStats.optimize.portfolio.
14
extractWeights.rebal, 14

ROI,

generatesequence, 10, 15

indexes, 15
is.constraint, 16
is.objective, 16

name.replace, 17

objective, 9, 15,17, 26
optimize.portfolio, 4-9, 12-14, 18, 22-24

31

optimize.portfolio.parallel, 13,19
optimize.portfolio.rebalancing, /4,21

plot.optimize.portfolio, 22
plot.optimize.portfolio.DEoptim, 23
plot.optimize.portfolio.random, 23
portfolio_risk_objective, 24

random_portfolios, 13,25
random_walk_portfolios, 26
randomize_portfolio, 25, 25, 26
return_objective, 27
risk_budget_objective, 27

set.portfolio.moments, I8, 28

summary.optimize.portfolio.rebalancing,
29

title, 5-8, 22-24
trailingFUN, 29

update.constraint, 30

	add.objective
	CCCgarch.MM
	chart.Scatter.DE
	chart.Scatter.RP
	chart.Weights.DE
	chart.Weights.RP
	charts.DE
	charts.RP
	constrained_objective
	constraint
	constraint_ROI
	extract.efficient.frontier
	extractStats
	extractStats.optimize.portfolio.DEoptim
	extractStats.optimize.portfolio.parallel
	extractStats.optimize.portfolio.random
	extractStats.optimize.portfolio.ROI
	extractWeights.rebal
	generatesequence
	indexes
	is.constraint
	is.objective
	name.replace
	objective
	optimize.portfolio
	optimize.portfolio.parallel
	optimize.portfolio.rebalancing
	plot.optimize.portfolio
	plot.optimize.portfolio.DEoptim
	plot.optimize.portfolio.random
	portfolio_risk_objective
	randomize_portfolio
	random_portfolios
	random_walk_portfolios
	return_objective
	risk_budget_objective
	set.portfolio.moments
	summary.optimize.portfolio.rebalancing
	trailingFUN
	update.constraint
	Index

