The RepeatABEL package - a tutorial

Lars Ronnegard

 $\mathrm{May}\ 7,\ 2015$

Introduction

This vignette gives an introduction to the RepeatABEL package. The package performs GWAS for data where there are repeated observations on individuals. Various random effects, including polygenic effects, can be fitted, as well as spatial effects. In a first step a model without the fixed SNP effect is fitted using the hglm package for estimating variance components (see Ronnegard, Shen & Alam (2010) hglm: A package for fitting hierarchical generalized linear models. The R Journal 2:20-28). These estimates are subsequently used in the GWAS where each marker is fitted one at a time. Thus, this is similar to using the polygenic_hglm function and subsequently the mmscore function in GenABEL. The package consists of three main functions rGLS, preFitModel and simulate_PhenData.

Theory for the rGLS function

The rGLS function is the main function of the package and by default fits a linear mixed model including random polygenic effects g and permanent environmental effects p in

$$y = X\beta + g + Zp + e \tag{1}$$

where \boldsymbol{y} is the studed trait, $\boldsymbol{\beta}$ are fixed effects, \boldsymbol{e} are residuals with $\boldsymbol{e} \sim N(0, \sigma_e^2)$ having residual variance σ_e^2 . Furthermore, \boldsymbol{X} and \boldsymbol{Z} are model matrices. The random effects are assumed multivariate normal such that $\boldsymbol{p} \sim N(0, \boldsymbol{I}\sigma_p^2)$ and $\boldsymbol{g} \sim N(0, \boldsymbol{G}\sigma_g^2)$ where \boldsymbol{G} is the genomic relationship matrix. Thus the estimated (co)variance matrix for this model is

$$\hat{\mathbf{V}} = \mathbf{G}\hat{\sigma}_q^2 + \mathbf{Z}\mathbf{Z}^T\hat{\sigma}_p^2 + \mathbf{I}\hat{\sigma}_e^2. \tag{2}$$

Subsequently, a linear model is fitted (using generalized least squares, GLS) for each marker where the covariate x_{SNP} is coded as 0,1,2:

$$y = X\beta + x_{SNP}\beta + \varepsilon \tag{3}$$

with

$$\varepsilon \sim N(0, \sigma_{\epsilon}^2 \hat{V}).$$
 (4)

A Wald test is used to compute the P value for SNP effect β .

The computations are made fast by applying a eigen-decomposition of \hat{V} and using the built-in qr function in R to fit the linear models (3).

Using the rGLS function

The following example illustrates the use of the function. There are two data objects to be included in the input: a GenABEL object including the genotypic information and a data frame including the phenotypic information. The name of the ID variable in the phenotype data frame should be "id" (otherwise specify id.name equal to the ID variable name).

In this example there are 360 observations from 100 individuals, and there are 5792 SNP to be tested.

- > library(RepeatABEL)
- > data(gen.data) #GenABEL object including IDs and marker genotypes
- > data(Phen.Data) #Phenotype data with repeated observations

The data frame Phen.Data includes the trait value y, two covariates (age and sex) and the ID of the individuals. We wish to include age and sex as fixed effects so the function input is

The computations in this function consists of four parts: construction of the GRM, variance component estimation using the hglm function, rotating the GLS using eigen-decomposition transforming it to an ordinary least squares (OLS) problem, and finally fitting an OLS for each SNP. How far the computations have come is shown in the output.

The class of the output object GWAS1 is gwaa.scan, so we can apply the generic functions summary() and plot() defined by the GenABEL package.

```
> summary(GWAS1)
Summary for top 10 results, sorted by P1df
         Chromosome Position Strand A1 A2
                                             effB
rs120315
                 1 3725352 + T C 2.1696316
                                - C A -2.0412127
rs9670687
                1 4779800
rs891586
                2 8024318
                                + A G -1.6669267
                2 8022651
                                - A C 1.6169429
rs1352451
                2 8167984
rs1252282
                                - A T -0.9982089
                1 3729983
                                + C T -1.8586037
rs9922492
                 1 3721952
rs7633966
                                + C T 1.8586037
rs4378234
                1 4800348
                                - G T -1.9012073
rs7499832
                 3 10242953
                                - G C -1.0897248
                                - T G -1.9073305
rs6561272
                 1 3715538
         chi2.1df
                         P1df Pc1df
              NA 3.501204e-07
rs120315
rs9670687
              NA 1.366120e-04
rs891586
              NA 1.975997e-04
             NA 3.959643e-04
rs1352451
                                NA
            NA 4.109058e-04
                                NA
rs1252282
            NA 4.832322e-04
rs9922492
                                NA
rs7633966
            NA 4.832322e-04
                                NA
rs4378234
              NA 5.588239e-04
```

rs7499832	NA	6.167705e-04	NA
rs6561272	NA	8.656541e-04	NA

Using the preFitModel function

The function preFitModel is used for variance component estimation and increases the flexibility of modeling in the rGLS function.

Fitting the same model as above

To start with we have a look at how the model in the previous section can be fitted in two steps using the preFitModel function and thereafter the rGLS function. Note that the results are exactly the same as in the previous section.

```
> #The same results can be computed using the preFitModel as follows
> fixed=y ~ age + sex
> Mod1 <- preFitModel(fixed, random=~1|id, genabel.data = gen.data,</pre>
   phenotype.data = Phen.Data, corStruc=list( id=list("GRM","Ind") ))
[1] "GRM ready"
> GWAS1b <- rGLS(fixed, genabel.data = gen.data,
   phenotype.data = Phen.Data, V = Mod1$V)
[1] "Rotation matrix ready"
[1] "Rotate LMM started"
[1] "Rotate LMM ready"
> summary(GWAS1b)
Summary for top 10 results, sorted by P1df
         Chromosome Position Strand A1 A2
                                              effB
rs120315
             1 3725352 + T C 2.1696316
                                - C A -2.0412127
rs9670687
                 1 4779800
                2 8024318
                                + A G -1.6669267
rs891586
                2 8022651
                                - A C 1.6169429
rs1352451
                 2 8167984
                                 - A T -0.9982089
rs1252282
                                + C T 1.8586037
rs7633966
                 1 3721952
                                + C T -1.8586037
rs9922492
                 1 3729983
                                 - G T -1.9012073
rs4378234
                 1 4800348
rs7499832
                 3 10242953
                                 - G C -1.0897248
                                 - T G -1.9073305
rs6561272
                  1 3715538
         chi2.1df
                         P1df Pc1df
rs120315
           NA 3.501204e-07
rs9670687
              NA 1.366120e-04
rs891586
              NA 1.975997e-04
                                 NA
             NA 3.959643e-04
rs1352451
                                 NA
             NA 4.109058e-04
rs1252282
rs7633966
             NA 4.832322e-04
rs9922492
             NA 4.832322e-04
rs4378234
             NA 5.588239e-04
                                 NΑ
            NA 6.167705e-04
rs7499832
                                 NA
rs6561272
              NA 8.656541e-04
```

The only information transferred from the preFitModel function to rGLS is the estimated (co)variance matrix Mod1\$V. The corStruc option specifies the correlation structure to be applied on each random effect. In the example we wish to fit polygenic effects and permanent environmental effects. The former requires a correlatioon structure given by the GRM whereas the permanent environmental effects are iid. Consequently, corStruc=list(id=list("GRM","Ind")) is specified.

A model having several different random effects

In this (fake) example there are 60 observations on each nest and there are 6 different nests. We wish to include these as random effect too, and to start with they are modelled as indendent random effects.

Spatial modelling

This example shows how random effects having a spatial correlation structure can be included to account for populaton structure. The spatial model used is a Conditional AutoRegressive (CAR) model and the input spatial information is given by a neighborhood matrix. (A neighborhood matrix has a non-zero value for an element (i,j) where the subject (nest in our example) i and j come from neighboring locations. The diagonal elements are zero.) Here the neighborhood matrix (D) is a 6×6 matrix

```
> D= matrix(0,6,6)

> D[1,2] = D[2,1] = 1

> D[5,6] = D[6,5] = 1

> D[2,4] = D[4,2] = 1

> D[3,5] = D[5,3] = 1

> D[1,6] = D[6,1] = 1

> D[3,4] = D[4,3] = 1
```

where for instance nests 1 and 2 are defined as neighbors. The model including polygenic effects, permanent environmental effects and a spatial correlation between nests is then fitted as

```
> Mod3 <- preFitModel(y ~ age + sex, random=~1|id + 1|nest,
    genabel.data = gen.data, phenotype.data = Phen.Data,
    corStruc=list( id=list("GRM","Ind") ,
    nest=list("CAR")), Neighbor.Matrix=D )
> GWAS2b <- rGLS(fixed, genabel.data = gen.data,
    phenotype.data = Phen.Data, V = Mod3$V)</pre>
```

Using the simulate_PhenData function

The third function included in the RepeatABEL package is a simulation function where one can simulate phenotypic data having repeated observations. The input genotype information is given by a GenABEL object.

Suppose for instance we want to simulate 4 observations from each individual and the three variance components (polygenic, permanent env., residual) are 1.

```
> VC.poly <- VC.perm <- VC.res <- 1
> n.obs <- rep(4, nids(gen.data))</pre>
```

In this example, the GenABEL object gen.data is used as input and an additive genetic effect of 2.0 is simulated at the location of SNP number 1000. The phenotype data is then simulated as

The simulated data can then be fitted as

```
> GWAS.sim1 <- rGLS(y ~ 1, genabel.data = gen.data,
    phenotype.data = Phen.Sim)</pre>
```

The data set gen.data includes information on sex, so we can also add a fixed sex effect to our simulations. Here a sex effect of 1.0 is simulated

```
> Phen.Sim <- simulate_PhenData(y ~ sex,
    genabel.data=gen.data, n.obs=n.obs, SNP.eff=2,
    SNP.nr=1000, VC=c(VC.poly,VC.perm,VC.res), beta=c(0,1))</pre>
```

where beta is a vector specifying the simulated values of the fixed effects and since we fit an intercept and a sex effect the length of beta is two. The data can then be fitted as

The produced Manhattan plot is given below

Simulation results

