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Statistics are used in medicine for data description 
and inference. Inferential statistics are used to answer 
questions about the data, to test hypotheses (formulating 
the alternative or null hypotheses), to generate a measure 
of effect, typically a ratio of rates or risks, to describe 
associations (correlations) or to model relationships (re-
gression) within the data and, in many other functions. 
Usually point estimates are the measures of associations 
or of the magnitude of effects. Confounding, measure-
ment errors, selection bias and random errors make un-
likely the point estimates to equal the true ones. In the es-
timation process, the random error is not avoidable. One 
way to account for is to compute p-values for a range of 
possible parameter values (including the null). The range 
of values, for which the p-value exceeds a specified alpha 
level (typically 0.05) is called confidence interval. An 
interval estimation procedure will, in 95% of repetitions 
(identical studies in all respects except for random error), 
produce limits that contain the true parameters. It is ar-
gued that the question if the pair of limits produced from 
a study contains the true parameter could not be answered 
by the ordinary (frequentist) theory of confidence inter-
vals1. Frequentist approaches derive estimates by using 
probabilities of data (either p-values or likelihoods) as 
measures of compatibility between data and hypotheses, 
or as measures of the relative support that data provide 
hypotheses. Another approach, the Bayesian, uses data to 
improve existing (prior) estimates in light of new data. 
Proper use of any approach requires careful interpretation 
of statistics1,2. 

The goal in any data analysis is to extract from raw 
information the accurate estimation. One of the most 
important and common question concerning if there is 
statistical relationship between a response variable (Y) 
and explanatory variables (Xi). An option to answer this 
question is to employ regression analysis in order to mod-
el its relationship. There are various types of regression 
analysis. The type of the regression model depends on 
the type of the distribution of Y; if it is continuous and 
approximately normal we use linear regression model; 
if dichotomous we use logistic regression; if Poisson or 
multinomial we use log-linear analysis; if time-to-event 
data in the presence of censored cases (survival-type) we 
use Cox regression as a method for modeling. By model-

ing we try to predict the outcome (Y) based on values of 
a set of predictor variables (Xi). These methods allow us 
to assess the impact of multiple variables (covariates and 
factors) in the same model3,4.

In this article we focus in linear regression. Linear 
regression is the procedure that estimates the coefficients 
of the linear equation, involving one or more independent 
variables that best predict the value of the dependent vari-
able which should be quantitative. Logistic regression 
is similar to a linear regression but is suited to models 
where the dependent variable is dichotomous. Logistic 
regression coefficients can be used to estimate odds ratios 
for each of the independent variables in the model. 

Linear equation 
In most statistical packages, a curve estimation proce-

dure produces curve estimation regression statistics and 
related plots for many different models (linear, logarith-
mic, inverse, quadratic, cubic, power, S-curve, logistic, 
exponential etc.). It is essential to plot the data in order to 
determine which model to use for each depedent variable. 
If the variables appear to be related linearly, a simple lin-
ear regression model can be used but in the case that the 
variables are not linearly related, data transformation 
might help. If the transformation does not help then a 
more complicated model may be needed. It is strongly 
advised to view early a scatterplot of your data; if the plot 
resembles a mathematical function you recognize, fit the 
data to that type of model. For example, if the data re-
semble an exponential function, an exponential model is 
to be used. Alternatively, if it is not obvious which model 
best fits the data, an option is to try several models and 
select among them. It is strongly recommended to screen 
the data graphically (e.g. by a scatterplot) in order to de-
termine how the independent and dependent variables are 
related (linearly, exponentially etc.)4-6. 

The most appropriate model could be a straight line, 
a higher degree polynomial, a logarithmic or exponen-
tial. The strategies to find an appropriate model include 
the forward method in which we start by assuming the 
very simple model i.e. a straight line (Y = a + bX or Y 
= b0 + b1X ). Then we find the best estimate of the as-
sumed model. If this model does not fit the data satisfac-
tory, then we assume a more complicated model e.g. a 
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2nd degree polynomial (Y=a+bX+cX2) and so on. In a 
backward method we assume a complicated model e.g. 
a high degree polynomial, we fit the model and we try 
to simplify it. We might also use a model suggested by 
theory or experience. Often a straight line relationship fits 
the data satisfactory and this is the case of simple linear 
regression. The simplest case of linear regression analy-
sis is that with one predictor variable6,7.

Linear regression equation
The purpose of regression is to predict Y on the basis 

of X or to describe how Y depends on X (regression line 
or curve)

X1, X2, …, Xk  Y 
The Xi (X1, X2, …, Xk) is defined as “predictor”, “ex-

planatory” or “independent” variable, while Y is defined 
as “dependent”, “response” or “outcome” variable. 

Assuming a linear relation in population, mean of Y 
for given X equals α+βX i.e. the “population regression 
line”. 

If Y = a + bX is the estimated line, then the fitted 
Ŷi = a + bXi is called the fitted (or predicted) value, 

and Yi – Ŷi is called the residual. 

The estimated regression line is determined in such 
way that Σ (residuals)² to be the minimal i.e. the stan-
dard deviation of the residuals to be minimized (residuals 
are on average zero). This is called the “least squares” 
method. In the equation 

Yi = a + bXi
 b is the slope (the average increase of outcome per 

unit increase of predictor)
 a is the intercept (often has no direct practical mean-

ing)
A more detailed (higher precision of the estimates a 

and b) regression equation line can also be written as 
Yi = a + bXi + σres where σres = 
residual standard deviation = sd

Further inference about regression line could be made 
by the estimation of confidence interval (95%CI for the 
slope b). The calculation is based on the standard error 
of b: 

so, 95% CI for β is b ± t0.975*se(b) [t-distr. with df = 
n-2] 
and the test for H0: β=0, is t = b / se(b) [p-value derived 
from t-distr. with df = n-2].

If the p value lies above 0.05 then the null hypoth-
esis is not rejected which means that a straight line model 
in X does not help predicting Y. There is the possibility 
that the straight line model holds (slope = 0) or there is a 
curved relation with zero linear component. On the other 
hand, if the null hypothesis is rejected either the straight 
line model holds or in a curved relationship the straight 
line model helps, but is not the best model. Of course 
there is the possibility for a type II or type I error in the 

first and second option, respectively. The standard devia-
tion of residual (σres) is estimated by

The standard deviation of residual (σres) characterizes 
the variability around the regression line i.e. the smaller 
the σres, the better the fit. It has a number of degrees of 
freedom. This is the number to divide by in order to have 
an unbiased estimate of the variance. In this case df = n-2, 
because two parameters, α and β, are estimated7. 

Multiple linear regression analysis
As an example in a sample of 50 individuals we 

measured: Y = toluene personal exposure concentration 
(a widespread aromatic hydrocarbon); X1 = hours spent 
outdoors; X2 = wind speed (m/sec); X3 = toluene home 
levels. Y is the continuous response variable (“depen-
dent”) while X1, X2, …, Xp as the predictor variables 
(“independent”) [7]. Usually the questions of interest are 
how to predict Y on the basis of the X΄s and what is the 
“independent” influence of wind speed, i.e. corrected for 
home levels and other related variables? These questions 
can in principle be answered by multiple linear regres-
sion analysis. 

In the multiple linear regression model, Y has normal 
distribution with mean 

 Y = β0 + β1Χ1 + …+βρΧρ + σ(Υ),  sd(Y) = 
σ (independent of X’s)

The model parameters β0 + β1 + …+βρ and σ must be 
estimated from data.
β0 = intercept
β1 … βρ = regression coefficients
σ = σres = residual standard deviation

Interpretation of regression coefficients
In the equation Y = β0 + β1Χ1 + …+βρΧρ
β1 equals the mean increase in Y per unit increase in 

Xi , while other Xi’s are kept fixed. In other words βi is 
influence of Xi corrected (adjusted) for the other X’s. The 
estimation method follows the least squares criterion. 

If b0, b1, …, bρ are the estimates of β0, β1, … , βρ then 
the “fitted” value of Y is

Yfit = b0 + b1Χ1 + …+bρΧρ 
The b0, b1, … , bρ are computed such that ∑(Y-Yfit)2 

to be minimal. Since Y – Yfit is called the residual; one can 
also say that the sum of squared residuals is minimized.

In our example, the statistical packages give the fol-
lowing estimates or regression coefficients (bi) and stan-
dard errors (se) for toluene personal exposure levels.

Predictor Xi Bi se (bi)
Time spent outdoors (hours) 0.582   0.191
Home levels (μg/m3) 0.554   0.053
Wind speed (m/sec) -54.15 18.24
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Then the regression equation for toluene personal ex-
posure levels would be: 
Tpers = 0.582 time outdoors + 0.554 Thome + (-54.15) 

wind speed
The estimated coefficient for time spent outdoors 

(0.582) means that the estimated mean increase in toluene 
personal levels is 0.582 μg/m3 if time spent outdoors in-
creases 1 hour, while home levels and wind speed remain 
constant. More precisely one could say that individuals dif-
fering one hour in the time that spent outdoors, but having 
the same values on the other predictors, will have a mean 
difference in toluene xposure levels equal to 0.582 μg/m3 8. 

Be aware that this interpretation does not imply any 
causal relation.

Confidence interval (CI) and test for regression 
coefficients

95% CI for βi is given by bi ± t0.975*se(bi) for df= 
n-1-p (df: degrees of freedom)

In our example that means that the 95% CI for the co-
efficient of time spent outdoors is 95%CI: - 0.19 to 0.49

                                        bi
The test for H0 (βi = 0) is t = ––––– (t-distr. with df = n–1– p)
                                           se(bi)

As in example if we test the H0: β humidity = 0 and 
find P = 0.40, which is not significant, we assumed that 
the association between between toluene personal expo-
sure and humidity could be explained by the correlation 
between humididty and wind speed8.

In order to estimate the standard deviation of the re-
sidual (Y – Yfit), i.e. the estimated standard deviation of 
a given set of variable values in a population sample, we 
have to estimate σ

The number of degrees of freedom is df = n – (p + 1), 
since p + 1 parameters are estimated. 

The ANOVA table gives the total variability in Y 
which can be partitioned in a part due to regression and a 
part due to residual variation: 

∑(Υ-Ῡ)2 = ∑(Υfit-Ῡ)2 = ∑(Υ-Υfit)2

total sum   =   sum of squares due to    +    residuals sum
of quares         regression                            of squares 
SStotal      =    SSreg                             +    SSres
With degrees of freedom (n – 1) = p + (n – p – 1)

In statistical packages the ANOVA table in which the 
partition is given usually has the following format [6]: 

Source SS Df MS F P R²
Regression 
Residual 
Total 

SS: “sums of squares”; df: Degrees of freedom; MS: “mean 
squares” (SS/dfs); F: F statistics (see below)

As a measure of the strength of the linear relation one 
can use R. R is called the multiple correlation coefficient 
between Y, predictors (X1, … Xp ) and Yfit and R square 
is the proportion of total variation explained by regres-
sion (R2=SSreg / SStot). 

Test on overall or reduced model  
Model: Y= β0 + β1Χ1 + …+ βρΧρ + residual

In our example Tpers = β0 + β1 time outdoors + β2 
Thome +β3 wind speed + residual 

The null hypothesis (H0) is that there is no regression 
overall i.e. β1= β2=…+βρ = 0 

The test is based on the proportion of the SS ex-
plained by the regression relative to the residual SS. The 
test statistic (F= MSreg / MSres) has F-distribution with 
df1 = p and df2 = n – p – 1 (F- distribution table). In our 
example F= 5.49 (P<0.01) 

If now we want to test the hypothesis Ho: β1= β2= β5 
= 0 (k = 3)

In general k of p regression coefficients are set to 
zero under H0. The model that is valid if H0=0 is true is 
called the “reduced model”. The Idea is to compare the 
explained variability of the model at hand with that of the 
reduced model.

The test statistic (F):

 
follows a F-distribution with df1 = k and df2 = n – p – 1.

If one or two variables are left out and we calculate 
SS reg (the statistical package does) and we find that 
the test statistic for F lies between 0.05 < P < 0.10, that 
means that there is some evidence, although not strong, 
that these variables together, independently of the others, 
contribute to the prediction of the outcome. 

Assumptions 
If a linear model is used, the following assumptions 

should be met. For each value of the independent vari-
able, the distribution of the dependent variable must be 
normal. The variance of the distribution of the depen-
dent variable should be constant for all values of the 
independent variable. The relationship between the de-
pendent variable and the independent variables should 
be linear, and all observations should be independent. 
So the assumptions are: independence; linearity; nor-
mality; homoscedasticity. In other words the residuals 
of a good model should be normally and randomly dis-
tributed i.e. the unknown σ does not depend on X (“ho-
moscedasticity”)2,4,6,9. 

Checking for violations of model assumptions
To check model assumptions we used residual anal-

ysis. There are several kinds of residuals most commonly 
used are the standardized residuals (ZRESID) and the 
studentized residuals (SRESID) [6]. If the model is cor-
rect, the residuals should have a normal distribution with 
mean zero and constant sd (i.e. not depending on X). In 
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order to check this we can plot residuals against X. If the 
variation alters with increasing X, then there is violation 
of homoscedasticity. We can also use the Durbin-Watson 
test for serial correlation of the residuals and casewise 
diagnostics for the cases meeting the selection criterion 
(outliers above n standard deviations). The residuals are 
(zero mean) independent, normally distributed with con-
stant standard deviation (homogeneity of variances)4,6. 

To discover deviations form linearity and homogene-
ity of variables we can plot residuals against each pre-
dictor or against predicted values. Alternatively by using 
the PARTIAL plot we can assess linearity of a predictor 
variable. The partial plot for a predictor X1 is a plot of re-
siduals of Y regressed on other X’s and against residuals 
of Xi regressed on other X’s. The plot should be linear. To 
check the normality of residuals we can use an histogram 
(with normal curve) or a normal probability plot6,7.

The goodness-of-fit of the model is assessed by study-
ing the behavior of the residuals, looking for “special ob-
servations / individuals” like outliers, observations with 
high “leverage” and influential points. Observations de-
serving extra attention are outliers i.e. observations with 
unusually large residual; high leverage points: unusual x - 
pattern, i.e. outliers in predictor space; influential points: 
individuals with high influence on estimate or standard 
error of one or more β’s. An observation could be all 
three. It is recommended to inspect individuals with large 
residual, for outliers; to use distances for high leverage 
points i.e. measures to identify cases with unusual combi-
nations of values for the independent variables and cases 
that may have a large impact on the regression model. For 
influential points use influence statistics i.e. the change 
in the regression coefficients (DfBeta(s)) and predicted 
values (DfFit) that results from the exclusion of a particu-
lar case. Overall measure for influence on all β’s jointly 
is “Cook’s distance” (COOK). Analogously for standard 
errors overall measure is COVRATIO6.

Deviations from model assumptions
We can use some tips to correct some deviation from 

model assumptions. In case of curvilinearity in one or 
more plots we could add quadratic term(s). In case of non 
homogeneity of residual sd, we can try some transforma-
tion: log Y if Sres is proportional to predicted Y; square 
root of Y if Y distribution is Poisson-like; 1/Y if Sres2 
is proportional to predicted Y; Y2 if Sres2 decreases with 
Y. If linearity and homogeneity hold then non-normality 
does not matter if the sample size is big enough (n≥50-
100). If linearity but not homogeneity hold then estimates 
of β’s are correct, but not the standard errors. They can 
be corrected by computing the “robust” se’s (sandwich, 
Huber’s estimate)4,6,9. 

Selection methods for Linear Regression modeling
There are various selection methods for linear re-

gression modeling in order to specify how independent 
variables are entered into the analysis. By using different 
methods, a variety of regression models from the same 

set of variables could be constructed. Forward variable 
selection enters the variables in the block one at a time 
based on entry criteria. Backward variable elimination 
enters all of the variables in the block in a single step 
and then removes them one at a time based on removal 
criteria. Stepwise variable entry and removal examines 
the variables in the block at each step for entry or re-
moval. All variables must pass the tolerance criterion to 
be entered in the equation, regardless of the entry meth-
od specified. A variable is not entered if it would cause 
the tolerance of another variable already in the model to 
drop below the tolerance criterion6. In a model fitting the 
variables entered and removed from the model and vari-
ous goodness-of-fit statistics are displayed such as R2, 
R squared change, standard error of the estimate, and an 
analysis-of-variance table. 

Relative issues
Binary logistic regression models can be fitted using 

either the logistic regression procedure or the multinomi-
al logistic regression procedure. An important theoretical 
distinction is that the logistic regression procedure pro-
duces all statistics and tests using data at the individual 
cases while the multinomial logistic regression procedure 
internally aggregates cases to form subpopulations with 
identical covariate patterns for the predictors based on 
these subpopulations. If all predictors are categorical or 
any continuous predictors take on only a limited num-
ber of values the mutinomial procedure is preferred. As 
previously mentioned, use the Scatterplot procedure to 
screen data for multicollinearity. As with other forms of 
regression, multicollinearity among the predictors can 
lead to biased estimates and inflated standard errors. If all 
of your predictor variables are categorical, you can also 
use the loglinear procedure. 

In order to explore correlation between variables, 
Pearson or Spearman correlation for a pair of variables r 
(Xi, Xj) is commonly used. For each pair of variables (Xi, 
Xj) Pearson’s correlation coefficient (r) can be computed. 
Pearson’s r (Xi; Xj) is a measure of linear association be-
tween two (ideally normally distributed) variables. R2 is 
the proportion of total variation of the one explained by 
the other (R2 = b * Sx/Sy), identical with regression. Each 
correlation coefficient gives measure for association be-
tween two variables without taking other variables into 
account. But there are several useful correlation concepts 
involving more variables. The partial correlation coef-
ficient between Xi and Xj, adjusted for other X`s e.g. r 
(X1; X2 / X3). The partial correlation coefficient can be 
viewed as an adjustment of the simple correlation tak-
ing into account the effect of a control variable: r(X ; Y 
/ Z ) i.e. correlation between X and Y controlled for Z. 
The multiple correlation coefficient between one X and 
several other X`s e.g. r (X1 ; X2 , X3 , X4) is a measure 
of association between one variable and several other 
variables r (Y ; X1, X2, …, Xk). The multiple correla-
tion coefficient between Y and X1, X2,…, Xk is defined 
as the simple Pearson correlation coefficient r (Y ; Yfit) 
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between Y and its fitted value in the regression model: Y 
= β0 + β1X1+ βkXk + residual. The square of r (Y; X1, 
…, Xk ) is interpreted as the proportion of variability in Y 
that can be explained by X1, …, Xk. The null hypothesis 
[H0: ρ (Υ : X1, …, Xk) = 0] is tested with the F-test for 
overall regression as it is in the multivariate regression 
model (see above)6,7. The multiple-partial correlation 
coefficient between one X and several other X`s adjusted 
for some other X`s e.g. r (X1 ; X2 , X3 , X4 / X5 , X6 ). 
The multiple partial correlation coefficient equal the rela-
tive increase in % explained variability in Y by adding 
X1,…, Xk to a model already containing Z1, …, Zρ as 
predictors6,7. 

Other interesting cases of multiple linear regression 
analysis include: the comparison of two group means. 
If for example we wish to answer the question if mean 
HEIGHT differs between men and women?
In the simple linear regression model: 

HEIGHT = βο + β1 SEX  with SEX = 
1 for women and SEX = 2 for men

Testing β1 = 0 is equivalent with testing 
HEIGHTMEN = HEIGHTWOMEN by means of Student’s t-
test

The linear regression model assumes a normal distri-
bution of HEIGHT in both groups, with equal σ. This is 
exactly the model of the two-sample t-test. In the case of 
comparison of several group means, we wish to answer 
the question if mean HEIGHT differ between different 
SES classes?   

SES: 1 (low); 2 (middle) and 3 (high) (socioeconomic 
status)

We can use the following linear regression model:
HEIGHT = βο + β1 X1 + β2 X2  with X1 = 

1 if SES is low and X1 = 0 otherwise and X2 = 
1 if SES is middle and X2 = 0 otherwise  

Then β1 and β2 are interpreted as: 
β1 = difference in mean HEIGHT between low and high 
class 
β2 = difference in mean HEIGHT between middle and 
high class
Testing β1 = β2 = 0 is equivalent with the “one-way ANal-
ysis Of VAriance F-test”. The statistical model in both 
cases is in fact the same4,6,7,9. 

Analysis of covariance (ANCOVA)
If we wish to compare a continuous variable Y (e.g. 

HEIGHT) between groups (e.g. men and women) cor-
rected (adjusted or controlled) for one or more covari-
ables X (confounders) (e.g. X = age or weight) then the 
question is formulated: Are means of HEIGHT of men 
and women different, if men and women of equal weight 
are compared? Be aware that this question is different 
from that if there is a difference between the means of 
HEIGHT for men and women? And the answers can be 
quite different! The difference between men and women 
could be opposite, larger or smaller than the crude if cor-
rected. In order to estimate the corrected difference the 
following multiple regression model is used: 

Y = β0 + β1Ζ + β2Χ + residual
where Y: response variable (for example HEIGHT); 

Z: grouping variable (for example Z = 0 for men and Z = 
1 for women); X: covariable (confounder)  (for example 
weight).  

So, for men the regression line is y = β0 + β2Χ and for 
women is y = (β0 + β1) + β2Χ. 

This model assumes that regression lines are paral-
lel. Therefore β1 is the vertical difference, and can be in-
terpreted as the: for X corrected difference between the 
mean response Y of the groups. If the regression lines are 
not parallel, then difference in mean Y depends on value 
of X. This is called “interaction” or “effect modifica-
tion”.

A more complicated model, in which interaction is 
admitted, is:

 Y = β0 + β1Ζ + β2Χ+ β3Ζ*Χ + residual
regression line men: y = β0 + β2Χ
regression line women: y = (β0 + β1)+ (β2 + β3)X

The hypothesis of the absence of “effect modifica-
tion” is tested by H0: β3 = 0

As an example, we are interested to answer what is 
- the corrected for body weight - difference in HEIGHT 
between men and women in a population sample? 

We check the model with interaction:
HEIGHT = β0 + β1 SEX + β2 WEIGHT + β3 SEX * 

WEIGHT + residual
By testing β3=0, a p-value much larger than 0.05 was 

calculated. We assume therefore that there is no interac-
tion i.e. regression lines are parallel. Further Analysis of 
Covariance for ≥ 3 groups could be used if we ask the 
difference in mean HEIGHT between people with differ-
ent level of education (primary, medium, high), corrected 
for body weight. In a model where the three lines may be 
not parallel we have to check for interaction (effect modi-
fication)7. Testing the hypothesis that coefficient of inter-
actions terms equal 0, it is reasonable to assume a model 
without interaction. Testing the hypothesis H0: β1 = β2 = 
0, i.e. no differences between education level when cor-
rected for weight, gives the result of fitting the model, for 
which the P-values for Z1 and Z2 depend on your choice 
of the reference group. The purposes of ANCOVA are to 
correct for confounding and increase of precision of an 
estimated difference.

 In a general ANCOVA model as:
Y = β0 + β1Ζ1 +… β k-1 Ζk-1+ β k X1+…+ β k+p-1 Xp + res  
where Y the response variable; k groups (dummy vari-
ables Z1, Z2, …, Zk-1) and X1, …, Xp confounders
there is a straightforward extension to arbitrary number 
of groups and covariables.

Coding categorical predictors in regression
One always has to figure out which way of coding 

categorical factors is used, in order to be able to inter-
pret the parameter estimates. In “reference cell” cod-
ing, one of the categories plays the role of the reference 
category (“reference cell”), while the other categories 
are indicated by dummy variables. The β`s correspond-
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ing to the dummies that are interpreted as the difference 
of corresponding category with the reference category. 
In “difference with overall mean” coding in the model 
of the previous example: [Y = β0 + β1Ζ1+ β2Ζ2 +…+ re-
sidual], the β0 is interpreted as the overall mean of the 
three levels of education while β1 and β2 are interpreted 
as the deviation of mean of primary and medium from 
overall mean, respectively. The deviation of the mean 
of high level from overall mean is given by (- β1 - β2). 
In “cell means” coding in the previous model (without 
intercept): [Y = β0 + β1Ζ1+ β2Ζ2 + β3Ζ3 …+ residual], β1 
is the mean of primary, β2 the middle and β3 of the high 
level education6,7,9.

Conclusions 
It is apparent to anyone who reads the medical lit-

erature today that some knowledge of biostatistics and 
epidemiology is a necessity. The goal in any data analysis 
is to extract from raw information the accurate estima-
tion. But before any testing or estimation, a careful data 
editing, is essential to review for errors, followed by data 
summarization. One of the most important and common 
question is if there is statistical relationship between a 

response variable (Y) and explanatory variables (Xi). An 
option to answer this question is to employ regression 
analysis. There are various types of regression analysis. 
All these methods allow us to assess the impact of mul-
tiple variables on the response variable. 
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