# [Distr-commits] r467 - branches/distr-2.2/pkg/distrEx/man pkg/distrEx/man

Sat Apr 18 12:58:05 CEST 2009

Author: ruckdeschel
Date: 2009-04-18 12:58:04 +0200 (Sat, 18 Apr 2009)
New Revision: 467

Modified:
branches/distr-2.2/pkg/distrEx/man/distrExConstants.Rd
pkg/distrEx/man/distrExConstants.Rd
Log:
R CMD check threw an error for distrEx .Rd file distrExConstants.Rd :
probably because of a multi-line \deqn{}{} expression of the type
\deqn{ < some TeX code >}%
{some text code}

modified this to
\deqn{ < some TeX code >}{
some text code}

hope this helps.

Modified: branches/distr-2.2/pkg/distrEx/man/distrExConstants.Rd
===================================================================
--- branches/distr-2.2/pkg/distrEx/man/distrExConstants.Rd	2009-04-15 11:27:00 UTC (rev 466)
+++ branches/distr-2.2/pkg/distrEx/man/distrExConstants.Rd	2009-04-18 10:58:04 UTC (rev 467)
@@ -19,8 +19,8 @@
\deqn{\gamma=-\Gamma'(1)}{gamma=-digamma(1)}
given in \url{http://mathworld.wolfram.com/Euler-MascheroniConstant.html} (48);
\item \code{APERYCONSTANT}: the \enc{Apéry}{Apery} constant
-        \deqn{\zeta(3)= \frac{5}{2} (\sum_{k\ge 1}\frac{(-1)^{k-1}}{k^3 {2k\choose k}})}%
-             {zeta(3)=5/2 sum_{k>=0} (-1)^(k-1)/(k^3 * choose(2k,k))}
+        \deqn{\zeta(3)= \frac{5}{2} (\sum_{k\ge 1}\frac{(-1)^{k-1}}{k^3 {2k\choose k}})}{
+             zeta(3) = 5/2 sum_{k>=0} (-1)^(k-1)/(k^3 * choose(2k,k))}
as given in \url{http://mathworld.wolfram.com/AperysConstant.html}, equation (8);
}

Modified: pkg/distrEx/man/distrExConstants.Rd
===================================================================
--- pkg/distrEx/man/distrExConstants.Rd	2009-04-15 11:27:00 UTC (rev 466)
+++ pkg/distrEx/man/distrExConstants.Rd	2009-04-18 10:58:04 UTC (rev 467)
@@ -19,8 +19,8 @@
\deqn{\gamma=-\Gamma'(1)}{gamma=-digamma(1)}
given in \url{http://mathworld.wolfram.com/Euler-MascheroniConstant.html} (48);
\item \code{APERYCONSTANT}: the \enc{Apéry}{Apery} constant
-        \deqn{\zeta(3)= \frac{5}{2} (\sum_{k\ge 1}\frac{(-1)^{k-1}}{k^3 {2k\choose k}})}%
-             {zeta(3)=5/2 sum_{k>=0} (-1)^(k-1)/(k^3 * choose(2k,k))}
+        \deqn{\zeta(3)= \frac{5}{2} (\sum_{k\ge 1}\frac{(-1)^{k-1}}{k^3 {2k\choose k}})}{
+             zeta(3) = 5/2 sum_{k>=0} (-1)^(k-1)/(k^3 * choose(2k,k))}
as given in \url{http://mathworld.wolfram.com/AperysConstant.html}, equation (8);
}