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Statistical Methods in Medical Research 2008; 17: 207–221

Comparison of non-parametric confidence intervals
for the area under the ROC curve of a
continuous-scale diagnostic test
Gengsheng Qin, Lejla Hotilovac Department of Mathematics and Statistics, Georgia State
University, 30 Pryor Street, Atlanta, GA 30303, USA

The accuracy of a diagnostic test with continuous-scale results is of high importance in clinical medicine.
It is often summarised by the area under the ROC curve (AUC). In this article, we discuss and compare
nine non-parametric confidence intervals of the AUC for a continuous-scale diagnostic test. Simulation
studies are conducted to evaluate the relative performance of the confidence intervals for the AUC in terms
of coverage probability and average interval length. A real example is used to illustrate the application of
the recommended methods.

1 Introduction

One of the main goals of a diagnostic test is to distinguish the diseased from non-diseased
patients. The accuracy of a binary-scale diagnostic test can be measured by its sensitivity
and specificity, which are defined as the probabilities of the test correctly identifying the
diseased and non-diseased subjects respectively. When the response of a diagnostic test is
continuous, we have to choose a cut-off point for the positive result in order to compute
the sensitivity and specificity of the test. As the cut-off point changes, specificity and
sensitivity vary inversely to each other. The Receiver Operating Characteristic (ROC)
curve, denoted by R(p), is a plot of sensitivity against 1-specificity as the cut-off point
runs through the whole range of possible test values.

The ROC curve of a diagnostic test best represents the relationship between specificity
and 1-sensitivity among all cut-off points of the test.1,2 It was derived from statistical
decision theory and originally developed in the context of electronic signal detection.3
It has been used in medical imaging and radiology, psychiatry, non-destructive testing
and manufacturing inspection systems.4–6 Recent applications of ROC curve include
assessment of the effectiveness of continuous diagnostic markers in distinguishing
between diseased and non-diseased individuals.

The area under the ROC curve (AUC), defined as δ = ∫ 1
0 R(p)dp, is the most popular

global summary measure for a diagnostic test. It indicates the overall performance of a
diagnostic test in terms of its accuracy at various diagnostic thresholds used to discrimi-
nate disease cases and non-disease cases. Let Y and X be the results of a continuous-scale
test for a diseased and a non-diseased subject, respectively. Bamber7 showed that the
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208 G Qin and L Hotilovac

AUC δ = P(Y ≥ X). It can be interpreted as the probability that, in a randomly selected
pair of diseased and non-diseased subjects, the test value of the diseased subject is higher
than or equal to that of the non-diseased subject. In a more general context, Wolfe and
Hogg8 recommended the use of AUC as a general measure for the differences between
two distributions.

One important statistical problem in the ROC study is the interval estimation of the
AUC for a continuous-scale diagnostic test. Parametric methods9–15 have been pro-
posed for construction of confidence intervals of the AUC. For example, when the
test results follow a binormal distribution, the AUC can be explicitly expressed in
terms of means and standard deviations. So it can be estimated directly by substi-
tuting sample means and standard errors. The variance estimator can also be obtained
via the delta method.9 Metz et al.10 proposed algorithms for fitting binormal ROC
curves to continuously-distributed data and estimating the AUC based on the binormal
ROC curve parameters, with large-sample standard errors and confidence intervals.
In these studies, researchers considered different parametric distributions like expo-
nential distributions,11 gamma distributions12 and skew-normal distributions,13 AUC
values between 0.50 (corresponding to a useless diagnostic test) and 1.00 (corresponding
to a perfect diagnostic test),14,15 and sample sizes between 10 and 70 for both diseased
and non-diseased subjects.15 However, parametric methods for the inferences on AUC
may be sensitive to the model assumptions and can only provide a limited range of
distributional forms for the test results from ‘diseased’ and ‘non-diseased’ populations.
Therefore, many non-parametric approaches have been proposed for the inference on
AUC.7,9,16–19 Currently, the most popular non-parametric intervals for the AUC include
Mann–Whitney statistic-based intervals and DeLong’s non-parametric interval.17

Whether the AUC is estimated parametrically or non-parametrically, confidence inter-
vals for the AUC are usually obtained by using the normal approximation to the
distribution of the estimators. Obuchowski and Lieber15 performed a simulation study
to evaluate the coverage of 95% normal approximation-based intervals, bootstrap
percentile, bootstrap-t, bootstrap bias-corrected accelerated intervals and confidence
intervals with the Student t distribution for AUC of moderate (0.80) and high (0.95)
accuracy. They found that the asymptotic methods do not provide adequate coverage
for small samples; for AUC values of high accuracy, the sample size must be large (more
than 200) for the asymptotic methods to be applicable. Instead, they recommended
using one of three bootstrap methods (bootstrap percentile, bootstrap-t or bootstrap
bias-corrected accelerated method) depending on the estimation approach (parametric
versus non-parametric) and AUC (moderate versus high). They concluded that there was
not a single best alternative for constructing confidence intervals for a single AUC for
small samples. Recently, Qin and Zhou19 proposed an empirical likelihood (EL)-based
interval for a single AUC. The EL interval has nice theoretical properties and outperforms
the existing normal approximation-based intervals, bootstrap percentile and bootstrap-t
intervals. In this article, we focus on comparison of non-parametric confidence intervals
for the AUC. We will discuss and compare a Mann–Whitney statistic-based interval, a
logit transformation-based interval, a non-parametric interval by DeLong et al.,17 an
EL-based interval,19 and five bootstrap-based confidence intervals for the AUC. Exten-
sive simulation studies are conducted to evaluate the relative performance of these
confidence intervals in terms of coverage probability and average interval length.
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Comparison of non-parametric confidence intervals 209

The article is organised as follows. In Section 2, we present nine non-parametric con-
fidence intervals for the area under the ROC curve. In Section 3, we conduct simulation
studies to evaluate the relative performance of these confidence intervals. In Section 4,
we illustrate the application of the recommended methods in a real data set. Finally, we
present discussion and conclusion in Section 5.

2 Non-parametric intervals for the AUC

Let F and G be the distribution functions of X and Y, respectively. For a fixed value of
specificity at (1 − p), the corresponding sensitivity of the test is R(p) = 1 − G(F−1(1 −
p)), where F−1(·) is the inverse function of F(·). Let X1, . . . , Xm be the test results
of a random sample of non-diseased subjects and Y1, . . . , Yn be the test results of a
random sample of diseased subjects. Our goal is to construct confidence intervals for
the AUC δ.

2.1 Mann–Whitney and logit-transformation-based confidence
intervals for the AUC

The simplest non-parametric estimator for the AUC is the well-known Mann–Whitney
two-sample rank statistic, defined by

δ̂ = 1
mn

m∑
i=1

n∑
j=1

I(Yj ≥ Xi).

This estimator is an unbiased estimator for the AUC, which equals the trapezoidal area
under the empirical ROC curve.7 Sen18 shown that(

mn
m + n

)1/2
δ̂ − δ

S
L−→ N(0, 1),

where

S =
(

mS2
01 + nS2

10

m + n

)1/2

,

S2
10 = 1

(m − 1)n2

[
m∑

i=1

(Ri − i)2 − m
(

R̄ − m + 1
2

)2
]

,

S2
01 = 1

(n − 1)m2

 n∑
j=1

(Sj − j)2 − n
(

S̄ − n + 1
2

)2
 ,

R̄ = 1
m

m∑
i=1

Ri, S̄ = 1
n

n∑
j=1

Sj.
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210 G Qin and L Hotilovac

Here, Ri is the rank of X(i) ( the i-th ordered value among Xi’s ) in the combined
sample of Xi’s and Yj’s, Sj is the rank of Y(j) ( the j-th ordered value among Yj’s ) in the
combined sample of Xi’s and Yj’s, and z1−α/2 is the (1 − α/2)-th quantile of standard
normal distribution.

Using above asymptotic normality, we can construct a confidence interval for the
AUC (MW interval):

(l1, u1) = δ̂ ∓ z1−α/2

(
(m + n)S2

mn

)1/2

. (1)

Although MW interval has asymptotically correct coverage probability, it suffers from
low coverage accuracy for high values of AUC (e.g. 0.90, 0.95). AUC values of high
accuracy are of interest in some biomedical studies. For example, Rao et al.20 used
ROC analysis to evaluate the diagnostic accuracy of serum troponin T (a marker)
measurement after myocardial infarction in identifying left ventricular ejection fraction.
They reported that the estimated AUC of serum troponin T concentration is 0.9773,
and a 95% confidence interval for the AUC is (0.9409, 1.0136).

Since the AUC is restricted to [0,1], Pepe2 has argued that an asymmetric confidence
interval within (0,1) should be preferred. Using a logistic transformation, the lower and
upper limits of (1 − α)-th confidence interval for logit(δ) = log (δ/(1 − δ)) are

LL = log
δ̂

1 − δ̂
− z1−α/2

√
var(̂δ)

δ̂(1 − δ̂)
, UL = log

δ̂

1 − δ̂
+ z1−α/2

√
var(̂δ)

δ̂(1 − δ̂)
,

respectively. Here we take var(̂δ) = (m + n)S2/mn. Therefore, the (1 − α)-th logit-
transformation (LT)-based confidence interval for the AUC is

(l2, u2) =
(

exp(LL)
1 + exp(LL)

,
exp(UL)

1 + exp(UL)

)
.

The LT interval has good small sample performance, but it has two drawbacks. First,
logit(̂δ) = log

(̂
δ/(1 − δ̂)

)
is an unstable estimator for logit(δ) when δ̂ is close to one

(i.e. the test has high accuracy). It is possible to have larger variance for an unstable
estimator. Our simulation study in this article shows that the LT interval is slightly
conservative. It has slightly longer interval length than its competitors such as EL-based
interval. Second, the method breaks down when δ̂ equals one.
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2.2 DeLong's non-parametric interval for the AUC
DeLong et al.17 developed a fully non-parametric approach for construction of

confidence interval of the AUC based on the theory of U-statistics. Let

D10(Xi) = 1
n

n∑
j=1

I(Yj ≥ Xi), D01(Yj) = 1
m

m∑
i=1

I(Yj ≥ Xi),

VarD(̂δ) = 1
m(m − 1)

m∑
i=1

(
D10(Xi) − δ̂

)2 + 1
n(n − 1)

n∑
j=1

(
D01(Yj) − δ̂

)2
.

DeLong et al.17 shown that

δ̂ − δ

Var1/2
D (̂δ)

L−→ N(0, 1).

Therefore, (1 − α)-th DeLong’s confidence interval for the AUC can be constructed as
follows:

(l3, u3) = δ̂ ∓ z1−α/2Var1/2
D (̂δ).

DeLong’s interval is simple and easy to use. A computer program written in the SAS
language is also available from their website. Their approach has become the standard
way for calculating confidence interval for a single AUC.

2.3 Empirical likelihood-based interval for the AUC
For test value Y from a diseased subject, Pepe and Cai21 defined the placement

value as
U = 1 − F(Y)

It is evident that
E(1 − U) = E(F(Y)) = P(Y ≥ X) = δ.

Based on this relationship between the AUC and the placement value U, Qin and Zhou19

proposed an empirical likelihood approach for the inference of the AUC. They defined
the empirical log-likelihood ratio for the AUC as

l(δ) = −2 log R(δ) = 2
n∑

j=1

log{1 + λ(1 − Ûj − δ)}, (2)

where λ is the solution of

1
n

n∑
j=1

1 − Ûj − δ

1 + λ(1 − Ûj − δ)
= 0, (3)

and Ûj = 1 − F̂(Yj), j = 1, 2, . . . , n, F̂ is the empirical distribution of F.
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212 G Qin and L Hotilovac

Qin and Zhou19 proved that the limiting distribution of l(δ) is a scaled chi-square
distribution with one degree of freedom. That is,

r(δ)l(δ)
L−→ χ2

1 , (4)

where the scale constant r(δ) is

r(δ) = m
m + n

∑n
j=1(1 − Ûj − δ)2

nS2
.

So, an EL-based confidence intervals for the AUC can be constructed as follows:

(l4, u4) = {δ : r(̂δ)l(δ) ≤ χ2
1 (1 − α)}, (5)

where χ2
1 (1 − α) is the (1 − α)-th quantile of the chi-square distribution χ2

1 . (l4, u4) is
an approximate confidence intervals for the AUC with asymptotically correct coverage
probability 1 − α. This EL-based interval has good coverage accuracy.

2.4 Bootstrap intervals for the AUC
In this section, we introduce five bootstrap confidence intervals for the AUC. In order

to calculate a bootstrap estimate for δ, we need to draw a bootstrap resample of size n,
Y∗

i ’s, with replacement from the diseased sample Yi’s, and a separate bootstrap resample
of size m, X∗

j ’s, with replacement from the non-diseased sample Xj’s. This bootstrap
resampling strategy has been successfully used to construct confidence intervals for
sensitivity of a continuous-scale test in Zhou and Qin.24 Based on bootstrap samples,
we can calculate a bootstrap estimate for the AUC which is

δ̂∗ = 1
mn

m∑
i=1

n∑
j=1

I(Y∗
j ≥ X∗

i ).

After repeating the process B times, B bootstrap estimates for the AUC are obtained:

{̂δ∗
b : b = 1, 2, . . . , B}

Let δ̂∗
(1), δ̂

∗
(2), . . . , δ̂

∗
(B) denote the ordered values of δ̂∗

b’s. Based on these δ̂∗
b’s, we can

construct different bootstrap-based confidence intervals for δ.

2.4.1 Bootstrap percentile confidence interval for the AUC
Let Ĝ be the empirical distribution function of δ̂∗

b’s,. We can apply the bootstrap per-
centile method described by Efron and Tibshirani22 to get the (1 − α)-th bootstrap
percentile (BP) confidence interval for δ:

(l5, u5) =
(
Ĝ−1(α/2), Ĝ−1(1 − α/2)

)
=
(̂
δ∗

([Bα/2]), δ̂
∗
([B(1−α)/2])

)
,

where [x] represents the interger part of x, Ĝ−1(p) is the 100p-th percentile of Ĝ.
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Shao and Tu23 (p. 132) provided a justification of the bootstrap percentile method.
The assumption required for a good performance of the method is that the estimator
for the parameter of interest has a known distribution or asymptotic distribution. Since
the Mann–Whitney two-sample statistic δ̂ is asymptotically normal, the BP interval
for δ is asymptotically valid and its performance depends on how good the normal
approximation is. The BP interval is simple but may not be very accurate unless sample
sizes are very large.

2.4.2 Bootstrap percentile-t confidence interval for the AUC
The following method for constructing confidence interval of the AUC is derived from
the standard bootstrap percentile-t method. Let S∗ be the S calculated from bootstrap
sample. We define the bootstrap distribution of δ̂∗ as

K(x) = P∗
{(

mn
m + n

)1/2
δ̂∗ − δ̂

S∗ ≤ x

}
,

where P∗ is the conditional probability distribution given the original samples. As Efron
and Tibshirani22 shown in their book, percentile-t method estimates the distribution
function K directly from the data. By using B bootstrap re-samples, we can calculate
(mn/(m + n))1/2 (̂δ∗ − δ̂)/S∗ and get{

k∗
b =

(
mn

m + n

)1/2 δ̂∗
b − δ̂

S∗
b

: b = 1, 2, . . . , B

}
,

where S∗
b is the b-th bootstrap replicate of S. Then, the distribution function K can be

estimated by the empirical distribution K̂ of k∗
b’s. The (1 − α) bootstrap percentile-t

(BPT) confidence interval for δ is given by

(l6, u6) =
(

δ̂ −
(

(m + n)S2

mn

)1/2

K̂−1(α/2), δ̂ +
(

(m + n)S2

mn

)1/2

K̂−1(1 − α/2)

)

=
(

δ̂ −
(

(m + n)S2

mn

)1/2

k∗
([Bα/2]), δ̂ +

(
(m + n)S2

mn

)1/2

k∗
([B(1−α)/2])

)
,

where k∗
(b)’s represent the ordered values of k∗

b’s, K̂−1(p) is the 100p-th percentile of K̂.

2.4.3 Confidence intervals for the AUC calculated with bootstrap variance estimate
Zhou and Qin24 proposed a bootstrap method to construct confidence intervals for
sensitivity at a fixed level of specificity of a continuous-scale diagnostic test. Using
similar procedure, we can construct two additional confidence intervals for the AUC.
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214 G Qin and L Hotilovac

After drawing B bootstrap re-samples, we can obtain a bootstrap variance estimate
for δ̂:

V∗ = 1
B − 1

B∑
b=1

(̂δ∗
b − δ̄∗)2

where δ̄∗ = 1
B

∑B
b=1 δ̂∗

b.
Based on bootstrap variance estimate V∗, the first (1 − α) confidence interval for the

AUC, called BV1 interval, can be constructed as follows:

(l7, u7) = δ̄∗ ∓ Z1−α/2V∗1/2.

The second one, called BV2 interval, is given by

(l8, u8) = δ̂ ∓ Z1−α/2V∗1/2.

2.4.4 Bootstrap bias correction and acceleration confidence interval
The bootstrap Bias Correction and Acceleration (BCa) method for construction of con-
fidence interval is an improved version of the percentile method.22 The endpoints of the
BCa interval are given by percentiles of the bootstrap distribution, but they are not same
as the ones described earlier. Under the setting for the interval estimation of the AUC,
the percentiles used for this method depend on bias-correction W and acceleration a,
which are defined by

W = �−1

1
B

B∑
b=1

I(̂δ∗
b ≤ δ̂)

 ,

where �−1(·) is the inverse function of the standard normal distribution function, and

a = 1
6

n∑
j=1

d3
j(∑n

j=1 d2
j

)3/2 ,

where dj = δ̂ − Ûj, j = 1, 2, . . . , n. Using W and a, we can calculate the adjusted
nominal level as

α̃ = �

(
W + W + zα

1 − a(W + zα)

)
,

where zα is the α-th quantile of standard normal distribution. Therefore, the (1 − α)-th
BCa interval for the AUC is given by

(l9, u9) =
(̂
δ∗

([Bα̃/2]), δ̂
∗
([B(1−α̃)/2])

)
.
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3 Simulation study

To compare the finite sample performances of the confidence intervals presented in
Section 2, we conduct a simulation study to evaluate the coverage accuracy of these
intervals when AUC is at level of 0.70, 0.80 (moderate accuracy), 0.90 and 0.95 (high
accuracy). The study is conducted for eight combinations of sample sizes of (m, n) such
as (25, 25), (50, 50), (80, 80), (100, 100), (50, 80), (80, 50), (70, 100) and (100, 70).
For each combination of sample sizes, we generate 5000 random samples of size m from
the non-diseased population and of size n from the diseased population, respectively.
The 95% confidence intervals for the AUC are computed by using the nine different
methods explained earlier. Since five of the confidence intervals for the AUC are based on
bootstrap method, based on our extensive simulation studies, we recommend drawing
B ≥ 150 (here we take B = 400) bootstrap re-samples from the original samples.

In the simulation study, binormal and exponential models are evaluated for non-
diseased and diseased populations. In binormal model, the distribution function F
of non-diseased population is chosen to be a standard normal distribution function
with mean µ0 = 0 and standard deviation σ0 = 1. The distribution function G of dis-
eased population is chosen to be a normal distribution function but with the mean
µ = √

5�−1(δ) and the standard deviation σ = 2 where � is the standard normal
cumulative distribution function. For binormally distributed test results, the AUC is

δ = �

 µ − µ0√
σ 2 + σ 2

0

 .

In exponential model, F is chosen to be a standard exponential distribution with rate
υ = 1, while G is chosen to be an exponential distribution with rate θ = 1/δ − 1. The
corresponding AUC is

δ = υ

υ + θ
.

Tables 1–4 show results obtained from the simulation study.
When AUC is at level 0.7, we observe that the coverage probabilities of all the intervals

are close to each other, but EL and BP intervals have slightly shorter interval length. As
AUC increases, the coverage probabilities of MW, DL, BP, BV1, BV2 and BCa intervals
decrease, and fall well below the nominal level for high values of AUC. Tables 1–4 also
show that EL intervals and LT intervals have similar coverage accuracy for all the AUC
values considered here. The EL coverage is slightly less than the nominal level, whereas
the LT coverage is at or slightly above the nominal level in most cases. It may explain
why the length of EL interval is slightly shorter than that of LT interval. One problem
with the LT interval is that it may break down when AUC δ̂ is close to one (see Tables
1–4 where ‘NA’ means ‘not available’ for AUC = 0.90, 0.95).

Among the bootstrap-based intervals for the AUC, the BPT interval has the best
coverage accuracy although it has the longest interval length. The other four boot-
strap intervals often show much lower coverage probabilities than the EL and LT
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Table 1 Normal distribution: coverage probability of 95% confidence intervals for the AUC. EL: EL-based
interval. MW: Mann–Whitney interval. DL: DeLong’s interval. LT: Logit-Transformation-based interval. BP:
Bootstrap Percentile interval. BPT: Bootstrap Percentile-t interval. BV1 and BV2: Two intervals for the AUC
calculated with bootstrap variance estimate. BCa: Bootstrap Bias Correction and Acceleration interval

AUC (m, n) EL MW DL LT BP BPT BV1 BV2 BCa

0.70 (25,25) 0.9310 0.9309 0.9325 0.9549 0.9333 0.9733 0.9273 0.9276 0.9276
(50,50) 0.9429 0.9417 0.9433 0.9541 0.9380 0.9623 0.9366 0.9376 0.9390
(80,80) 0.9461 0.9437 0.9441 0.9552 0.9453 0.9530 0.9466 0.9460 0.9446

(100,100) 0.9479 0.9464 0.9445 0.9547 0.9480 0.9546 0.9480 0.9490 0.9473
(50,80) 0.9465 0.9465 0.9455 0.9554 0.9433 0.9586 0.9456 0.9460 0.9413
(80,50) 0.9427 0.9428 0.9421 0.9532 0.9456 0.9666 0.9456 0.9470 0.9470
(70,100) 0.9430 0.9433 0.9497 0.9503 0.9430 0.9536 0.9433 0.9426 0.9380
(100,70) 0.9451 0.9437 0.9408 0.9527 0.9410 0.9586 0.9400 0.9400 0.9393

0.80 (25,25) 0.9275 0.9245 0.9213 0.9551 0.9330 0.9790 0.9246 0.9236 0.9303
(50,50) 0.9407 0.9379 0.9357 0.9538 0.9300 0.9690 0.9316 0.9343 0.9290
(80,80) 0.9431 0.9418 0.9367 0.9530 0.9450 0.9690 0.9426 0.9406 0.9366

(100,100) 0.9489 0.9454 0.9400 0.9514 0.9380 0.9590 0.9433 0.9430 0.9410
(50,80) 0.9468 0.9412 0.9434 0.9513 0.9310 0.9610 0.9253 0.9270 0.9256
(80,50) 0.9420 0.9347 0.9347 0.9512 0.9313 0.9656 0.9303 0.9290 0.9306
(70,100) 0.9472 0.9440 0.9445 0.9513 0.9290 0.9570 0.9430 0.9420 0.9393
(100,70) 0.9443 0.9368 0.9399 0.9477 0.9383 0.9613 0.9366 0.9363 0.9366

0.90 (25,25) 0.8892 0.8845 0.8846 NA 0.9010 0.9406 0.8863 0.8860 0.8900
(50,50) 0.9352 0.9204 0.9161 0.9468 0.9150 0.9700 0.9240 0.9246 0.9300
(80,80) 0.9411 0.9264 0.9311 0.9471 0.9310 0.9670 0.9376 0.9373 0.9346

(100,100) 0.9468 0.9356 0.9332 0.9486 0.9220 0.9540 0.9330 0.9330 0.9293
(50,80) 0.9458 0.9281 0.9317 0.9547 0.9340 0.9630 0.9363 0.9356 0.9396
(80,50) 0.9330 0.9174 0.9194 0.9438 0.9246 0.9626 0.9160 0.9153 0.9160
(70,100) 0.9434 0.9297 0.9349 0.9498 0.9290 0.9580 0.9403 0.9406 0.9440
(100,70) 0.9401 0.9265 0.9257 0.9444 0.9290 0.9653 0.9180 0.9173 0.9253

0.95 (25,25) 0.8400 0.8300 0.8160 NA 0.8453 0.8513 0.8173 0.8186 0.9000
(50,50) 0.8964 0.8818 0.8793 0.9289 0.8840 0.9490 0.9020 0.9040 0.9160
(80,80) 0.9252 0.9064 0.9072 0.9414 0.9180 0.9610 0.9056 0.9063 0.9120

(100,100) 0.9340 0.9142 0.9188 0.9366 0.9180 0.9660 0.9196 0.9196 0.9246
(50,80) 0.9269 0.9060 0.9065 0.9462 0.9150 0.9720 0.9043 0.9046 0.9190
(80,50) 0.9205 0.8810 0.8827 0.9263 0.8896 0.9433 0.8780 0.8783 0.8883
(70,100) 0.9351 0.9138 0.9164 0.9478 0.9230 0.9660 0.9120 0.9110 0.9166
(100,70) 0.9273 0.9000 0.9054 0.9361 0.9146 0.9636 0.9046 0.9036 0.9096

intervals when the AUC is higher than 0.80. Furthermore, the bootstrap intervals are
computationally the most extensive intervals among all the intervals considered here.

In summary, we recommend the use of EL intervals or the LT intervals for the
AUC when the underlying distributions for diseased and non-diseased populations are
unknown. When AUC ≥ 0.95, the BPT interval is also a good alternative confidence
interval for the AUC even though it is slightly conservative.
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Table 2 Normal distribution: average length of 95% confidence intervals for the AUC

AUC (m, n) EL MW DL LT BP BPT BV1 BV2 BCa

0.70 (25,25) 0.2905 0.3033 0.3035 0.2971 0.2943 0.3330 0.2986 0.2986 0.2924
(50,50) 0.2088 0.2134 0.2133 0.2110 0.2087 0.2231 0.2115 0.2115 0.2081
(80,80) 0.1658 0.1681 0.1682 0.1670 0.1654 0.1736 0.1675 0.1675 0.1652

(100,100) 0.1485 0.1501 0.1502 0.1494 0.1480 0.1545 0.1499 0.1499 0.1478
(50,80) 0.1744 0.1770 0.1771 0.1757 0.1739 0.1826 0.1763 0.1763 0.1736
(80,50) 0.2013 0.2056 0.2058 0.1757 0.2016 0.2161 0.2041 0.2041 0.2011
(70,100) 0.1540 0.1559 0.1560 0.1551 0.1533 0.1599 0.1554 0.1554 0.1530
(100,70) 0.1723 0.1749 0.1749 0.1550 0.1718 0.1813 0.1740 0.1740 0.1712

0.80 (25,25) 0.2490 0.2567 0.2567 0.2583 0.2507 0.3104 0.2551 0.2551 0.2489
(50,50) 0.1499 0.1519 0.1809 0.1519 0.1502 0.1626 0.1798 0.1798 0.1762
(80,80) 0.1188 0.1197 0.1428 0.1200 0.1185 0.1259 0.1424 0.1424 0.1400

(100,100) 0.1064 0.1071 0.1277 0.1073 0.1071 0.1126 0.1276 0.1276 0.1255
(50,80) 0.1246 0.1257 0.1501 0.1262 0.1252 0.1327 0.1489 0.1489 0.1467
(80,50) 0.1726 0.1749 0.1749 0.1753 0.1715 0.1894 0.1741 0.1741 0.1707
(70,100) 0.1102 0.1109 0.1322 0.1111 0.1107 0.1165 0.1322 0.1322 0.1304
(100,70) 0.1473 0.1487 0.1488 0.1490 0.1463 0.1577 0.1482 0.1482 0.1455

0.90 (25,25) 0.1765 0.1779 0.1775 NA 0.1719 0.2815 0.1764 0.1764 0.1716
(50,50) 0.1070 0.1069 0.1270 0.1101 0.1058 0.1252 0.1274 0.1274 0.1240
(80,80) 0.0849 0.0846 0.1010 0.0860 0.0841 0.0930 0.1009 0.1009 0.0987

(100,100) 0.0759 0.0757 0.0903 0.0767 0.0752 0.0817 0.0900 0.0900 0.0878
(50,80) 0.0886 0.0882 0.1055 0.0902 0.0883 0.0973 0.1051 0.1051 0.1030
(80,50) 0.1247 0.1238 0.1233 0.1281 0.1202 0.1513 0.1223 0.1223 0.1187
(70,100) 0.0783 0.0781 0.0933 0.0794 0.0782 0.0847 0.0929 0.0929 0.0910
(100,70) 0.1061 0.1054 0.1051 0.1082 0.1031 0.1199 0.1048 0.1048 0.1021

0.95 (25,25) 0.1146 0.1128 0.1154 NA 0.1117 0.2126 0.1166 0.1166 0.1210
(50,50) 0.0723 0.0711 0.0851 0.0765 0.0706 0.1013 0.0857 0.0857 0.0830
(80,80) 0.0582 0.0571 0.0680 0.0600 0.0569 0.0704 0.0683 0.0683 0.0662

(100,100) 0.0522 0.0513 0.0610 0.0531 0.0512 0.0603 0.0609 0.0609 0.0593
(50,80) 0.0604 0.0593 0.0704 0.0626 0.0595 0.0727 0.0705 0.0705 0.0685
(80,50) 0.0850 0.0826 0.0827 0.0907 0.0810 0.1368 0.0829 0.0829 0.0800
(70,100) 0.0537 0.0527 0.0631 0.0546 0.0522 0.0612 0.0626 0.0626 0.0608
(100,70) 0.0733 0.0711 0.0713 0.0760 0.0699 0.0993 0.0713 0.0713 0.0690

4 An illustration example: pancreatic cancer biomarker

Pancreatic cancer is a disease that is difficult to be diagnosed at its early stage. CA-19-9
(a carbohydrate antigen) is a biomarker for pancreatic cancer measured on a continuous
positive scale. Wieand et al.9 reported a study on the diagnostic accuracy of CA-19-
9 in detecting pancreatic cancer. Concentrations of CA-19-9 in sera (ML) from 51
‘control’ patients with pancreatitis and 90 ‘cases’ pancreatic cancer were collected. This
dataset has been used by numerous statisticians to illustrate statistical techniques for
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Table 3 Exponential distribution: coverage probability of 95% confidence intervals for the AUC

AUC (m, n) EL MW DL LT BP BPT BV1 BV2 BCa

0.70 (25,25) 0.9348 0.9398 0.9400 0.9610 0.9350 0.9740 0.9316 0.9320 0.9350
(50,50) 0.9447 0.9445 0.9436 0.9532 0.9383 0.9620 0.9383 0.9390 0.9420
(80,80) 0.9418 0.9418 0.9428 0.9532 0.9376 0.9520 0.9353 0.9356 0.9346

(100,100) 0.9448 0.9464 0.9451 0.9508 0.9513 0.9600 0.9520 0.9523 0.9496
(50,80) 0.9445 0.9455 0.9491 0.9518 0.9436 0.9596 0.9486 0.9483 0.9430
(80,50) 0.9419 0.9434 0.9428 0.9521 0.9496 0.9646 0.9466 0.9453 0.9476
(70,100) 0.9489 0.9483 0.9487 0.9525 0.9463 0.9550 0.9436 0.9450 0.9450
(100,70) 0.9445 0.9429 0.9478 0.9510 0.9466 0.9610 0.9486 0.9486 0.9430

0.80 (25,25) 0.9253 0.9251 0.9241 0.9572 0.9390 0.9800 0.9273 0.9273 0.9400
(50,50) 0.9446 0.9394 0.9390 0.9551 0.9270 0.9570 0.9430 0.9453 0.9473
(80,80) 0.9459 0.9432 0.9438 0.9547 0.9280 0.9540 0.9366 0.9373 0.9356

(100,100) 0.9507 0.9456 0.9426 0.9478 0.9380 0.9540 0.9433 0.9450 0.9473
(50,80) 0.9469 0.9444 0.9468 0.9550 0.9370 0.9620 0.9480 0.9463 0.9480
(80,50) 0.9439 0.9400 0.9390 0.9522 0.9460 0.9696 0.9420 0.9423 0.9420
(70,100) 0.9477 0.9410 0.9468 0.9541 0.9450 0.9660 0.9420 0.9420 0.9403
(100,70) 0.9449 0.9437 0.9442 0.9531 0.9416 0.9583 0.9406 0.9410 0.9386

0.90 (25,25) 0.9025 0.8961 0.8898 NA 0.9060 0.9476 0.8853 0.8833 0.9150
(50,50) 0.9321 0.9200 0.9200 0.9482 0.9240 0.9740 0.9176 0.9170 0.9296
(80,80) 0.9423 0.9291 0.9345 0.9514 0.9240 0.9600 0.9296 0.9286 0.9310

(100,100) 0.9499 0.9380 0.9362 0.9485 0.9340 0.9610 0.9326 0.9330 0.9373
(50,80) 0.9467 0.9312 0.9316 0.9535 0.9270 0.9610 0.9290 0.9293 0.9346
(80,50) 0.9331 0.9140 0.9182 0.9546 0.9300 0.9713 0.9216 0.9226 0.9276
(70,100) 0.9467 0.9364 0.9313 0.9520 0.9310 0.9670 0.9413 0.9403 0.9406
(100,70) 0.9432 0.9271 0.9293 0.9525 0.9310 0.9650 0.9236 0.9250 0.9260

0.95 (25,25) 0.8800 0.8000 0.8148 NA 0.8476 0.8520 0.8153 0.8156 0.8600
(50,50) 0.8977 0.8817 0.8875 NA 0.9000 0.9460 0.8800 0.8796 0.8983
(80,80) 0.9296 0.9090 0.9060 0.9398 0.9160 0.9660 0.9093 0.9103 0.9190

(100,100) 0.9412 0.9174 0.9129 0.9473 0.9110 0.9660 0.9160 0.9180 0.9263
(50,80) 0.9329 0.9080 0.9010 0.9446 0.9220 0.9750 0.9103 0.9123 0.9193
(80,50) 0.9230 0.8817 0.8772 0.9421 0.8860 0.9533 0.8726 0.8733 0.8850
(70,100) 0.9356 0.9117 0.9166 0.9435 0.9340 0.9710 0.9130 0.9130 0.9216
(100,70) 0.9360 0.9058 0.9010 0.9431 0.9106 0.9646 0.9010 0.9013 0.9100

diagnostic tests.2 Here, we are interested in estimating the AUC of CA-19-9 and finding
a range of the AUC.

An estimate for the AUC of CA19-9 is 0.862 based on MW estimator. Since the
distributions of measurements for CA-19-9 in ‘control’ and ‘case’ groups are unknown,
based on our simulation studies, we should use the EL interval or LT interval for the
AUC as the range of global diagnostic accuracy of CA-19-9. The 95% EL and LT
intervals for the AUC are [0.793, 0.913], [0.791, 0.912], respectively. Note that the
EL and LT intervals have almost no difference in this example. Both intervals suggest
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Table 4 Exponential distribution: average length of 95% confidence intervals for the AUC

AUC (m, n) EL MW DL LT BP BPT BV1 BV2 BCa

0.70 (25,25) 0.2816 0.2932 0.2932 0.2878 0.2855 0.3176 0.2900 0.2900 0.2855
(50,50) 0.2013 0.2054 0.2055 0.2033 0.2016 0.2141 0.2043 0.2043 0.2016
(80,80) 0.1598 0.1619 0.1618 0.1609 0.1596 0.1669 0.1614 0.1614 0.1599

(100,100) 0.1431 0.1446 0.1447 0.1438 0.1423 0.1481 0.1440 0.1440 0.1422
(50,80) 0.1762 0.1788 0.1790 0.1771 0.1761 0.1850 0.1784 0.1784 0.1764
(80,50) 0.1872 0.1905 0.1903 0.1773 0.1870 0.1982 0.1895 0.1895 0.1865
(70,100) 0.1537 0.1554 0.1555 0.1547 0.1533 0.1599 0.1553 0.1553 0.1537
(100,70) 0.1612 0.1633 0.1632 0.1547 0.1610 0.1689 0.1630 0.1630 0.1610

0.80 (25,25) 0.2408 0.2481 0.2479 0.2492 0.2410 0.2872 0.2453 0.2453 0.2408
(50,50) 0.1725 0.1746 0.1745 0.1748 0.1713 0.1865 0.1739 0.1739 0.1712
(80,80) 0.1366 0.1376 0.1377 0.1378 0.1354 0.1436 0.1371 0.1371 0.1352

(100,100) 0.1223 0.1230 0.1229 0.1232 0.1210 0.1274 0.1226 0.1226 0.1209
(50,80) 0.1478 0.1489 0.1484 0.1489 0.1464 0.1559 0.1483 0.1483 0.1470
(80,50) 0.1628 0.1645 0.1648 0.1490 0.1622 0.1769 0.1646 0.1646 0.1616
(70,100) 0.1292 0.1301 0.1301 0.1303 0.1283 0.1353 0.1300 0.1300 0.1284
(100,70) 0.1396 0.1407 0.1406 0.1302 0.1385 0.1479 0.1403 0.1403 0.1381

0.90 (25,25) 0.1737 0.1752 0.1745 NA 0.1698 0.2643 0.1739 0.1739 0.1672
(50,50) 0.1254 0.1247 0.1244 0.1290 0.1223 0.1489 0.1244 0.1244 0.1217
(80,80) 0.0990 0.0984 0.0986 0.1010 0.0972 0.1093 0.0986 0.0986 0.0968

(100,100) 0.0887 0.0882 0.0883 0.0898 0.0870 0.0957 0.0883 0.0883 0.0866
(50,80) 0.1044 0.1036 0.1036 0.1064 0.1020 0.1143 0.1035 0.1035 0.1019
(80,50) 0.1206 0.1199 0.1198 0.1064 0.1174 0.1439 0.1194 0.1194 0.1165
(70,100) 0.0919 0.0914 0.0913 0.0933 0.0898 0.0987 0.0912 0.0912 0.0898
(100,70) 0.1031 0.1025 0.1023 0.0933 0.1005 0.1152 0.1022 0.1022 0.0996

0.95 (25,25) 0.1123 0.1115 0.1162 NA 0.1103 0.2120 0.1152 0.1152 0.1180
(50,50) 0.0881 0.0859 0.0858 NA 0.0828 0.1401 0.0848 0.0848 0.0822
(80,80) 0.0705 0.0688 0.0685 0.0731 0.0668 0.0890 0.0680 0.0680 0.0662

(100,100) 0.0630 0.0617 0.0614 0.0650 0.0606 0.0751 0.0616 0.0616 0.0600
(50,80) 0.0726 0.0707 0.0702 0.0759 0.0697 0.0920 0.0711 0.0711 0.0693
(80,50) 0.0856 0.0835 0.0830 0.0759 0.0812 0.1412 0.0832 0.0832 0.0803
(70,100) 0.0643 0.0629 0.0629 0.0668 0.0619 0.0766 0.0630 0.0630 0.0614
(100,70) 0.0738 0.0720 0.0719 0.0664 0.0704 0.1010 0.0718 0.0718 0.0696

that CA-19-9 has moderate to high level of diagnostic accuracy in detecting pancreatic
cancer.

5 Discussion

The main purpose of a diagnostic test is to determine if a patient has or does not have the
disease. Because of its significant role, the accuracy of this test is very important. The
area under the ROC curve measures the discrimination ability of a diagnostic test. In
order to report AUC properly, it is necessary to construct a confidence interval for its
value. In this article, we have discussed and compared nine non-parametric methods for
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constructing confidence intervals of the AUC. Among the nine intervals, the MW interval
is the simplest but usually not the best in terms of coverage probability, particularly
when AUC is high and the sample sizes for diseased and non-diseased subjects are small
and unequal. Both EL and LT intervals for the AUC have good coverage accuracy.
The EL interval has nice asymptotic property and is also simple to implement. The LT
interval depends on the asymptotic normality assumption of logit transformation of
MW estimator. It may break down when the observed AUC δ̂ is close to one. It can be
used when the normal approximation is true and δ̂ is not close to one. The BPT interval
is slightly conservative, but it has good coverage accuracy when AUC ≥ 0.95. It may
be a good alternative interval for the AUC when the AUC is extremely high. A S-plus
code implementing the recommended methods is available from the authors.
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