<div dir="ltr">Hi Federico<br><br>"shaming reputations"? sorry..., pretty much sure I don't have any reputation :-) if anyone ask a naive question this should be response? I disagree... anyway, thanks for the text. I'll keep in mind.<br><br>Cheers,<br><br>Roberto</div><div class="gmail_extra"><br><div class="gmail_quote">2014-10-30 16:16 GMT+00:00 Federico Calboli <span dir="ltr"><<a href="mailto:f.calboli@imperial.ac.uk" target="_blank">f.calboli@imperial.ac.uk</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">You’re welcome. I would not be presenting the results to referees, PhD examiners or colleagues.<br>
<br>
<a href="http://judgestarling.tumblr.com/post/79974811093/shaming-reputations-as-a-means-of-reducing-the" target="_blank">http://judgestarling.tumblr.com/post/79974811093/shaming-reputations-as-a-means-of-reducing-the</a><br>
<br>
Happy reading!<br>
<span class="HOEnZb"><font color="#888888"><br>
F<br>
</font></span><div class="HOEnZb"><div class="h5"><br>
<br>
On 30 Oct 2014, at 16:02, Roberto Oliveira Santos <<a href="mailto:roberto@geodev.com.br">roberto@geodev.com.br</a>> wrote:<br>
<br>
> Dear Federico<br>
><br>
> Many thanks. Very kind of you the "It would also be completely and utterly idiotic.".<br>
><br>
> Best wishes<br>
><br>
> Roberto<br>
><br>
><br>
> 2014-10-30 15:56 GMT+00:00 Federico Calboli <<a href="mailto:f.calboli@imperial.ac.uk">f.calboli@imperial.ac.uk</a>>:<br>
> On 30 Oct 2014, at 15:40, Roberto Oliveira Santos <<a href="mailto:roberto@geodev.com.br">roberto@geodev.com.br</a>> wrote:<br>
><br>
> > Dear all<br>
> ><br>
> > Is it possible to run find.clusters without the PCA analysis?<br>
><br>
> I would not know whether find.clusters would like it, but in general you can surely find clusters without bothering with a PCA first — you have a formula, you input some data, you get your results.<br>
><br>
> It would also be completely and utterly idiotic.<br>
><br>
> You use a PCA before because of correlation betwen the data, and you transform the data with a PCA in a set of independent variables (and you also have an idea of what linear combinations explain little or nothing in the bargain). You use a PCA to get some signal out of the noise.<br>
><br>
> So, you can well not use a PCA and cluster. You will get some results, that might, or not, look like the results you get after a PCA decomposition. You will also have biased your clustering to an unknown amount, in a way that is not clear what might actually mean.<br>
><br>
> BW<br>
><br>
> F<br>
><br>
><br>
> > I have interested in the clustering procedure but would like to compare the results with and without PCA transformation.<br>
> ><br>
> > Best wishes<br>
> ><br>
> > Roberto<br>
> > _______________________________________________<br>
> > adegenet-forum mailing list<br>
> > <a href="mailto:adegenet-forum@lists.r-forge.r-project.org">adegenet-forum@lists.r-forge.r-project.org</a><br>
> > <a href="https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/adegenet-forum" target="_blank">https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/adegenet-forum</a><br>
><br>
><br>
<br>
</div></div></blockquote></div><br></div>