
geoGraph: implementing geographic graphs for

large-scale spatial modelling

Thibaut Jombart, François Balloux, Andrea Manica

July 1, 2010

Contents

1 Introduction 1

2 First steps 2
2.1 Installing the package . 2
2.2 Data representation . 3

2.2.1 gGraph objects . 3
2.2.2 gData objects . 5

3 Using geoGraph 6
3.1 Importing geographic data . 6
3.2 Visualizing data . 11

3.2.1 Plotting gGraph objects 11
3.2.2 Zooming in and out, sliding, etc. 13
3.2.3 Plotting gData objects . 17

3.3 Editing gGraphs . 18
3.3.1 Changing the global connectivity of a gGraph 18
3.3.2 Changing local properties of a gGraph 22

3.4 Extracting information from GIS shapefiles 24
3.5 Finding least-cost paths . 27

1 Introduction

This document describes the geoGraph package for the R software. geoGraph

aims at implementing graph approaches for geographic data. In geoGraph, a
given geographic area is modelled by a fine regular grid, where each vertice
has a set of spatial coordinates and a set of attributes, which can be for
instance habitat descriptors, or the presence/abundance of a given species.
’Travelling’ within the geographic area can then be easily modelled as moving
between connected vertices. The cost of moving from one vertex to another
can be defined according to attribute values, which allows for instance to define

1

friction routes based on habitat.

geoGraph harnesses the full power of graph algorithms implemented in R by
the graph and RBGL (R Boost Graph Library) packages. In particular, RBGL
is an interface between R and the comprehensive Boost Graph Library in C++,
which provides fast and efficient implementations of a wide range of graph
algorithms. Once we have defined frictions for an entire geographic area, we
can easily, for instance, find the least costs path from one location to another,
or find the most parsimonious way of connecting a set of locations.

Interfacing spatial data and graphs can be a complicated task. The purpose
of geoGraph is to provide tools to achieve and simplify this ’preliminary’ step.
This is achieved by defining new classes of objects which are essentially geo-
referenced graphs with node attributes (gGraph objects), and interfaced spatial
data (gData objects). In this vignette, we show how to install geoGraph,
construct and handle gGraph/gData objects, and illustrate some basic features
of graph algorithms.

2 First steps

2.1 Installing the package

What is tricky here is that a vignette is basically available once the package is
installed. Assuming you got this document before installing the package, here
are some clues about installing geoGraph.

First of all, geoGraph depends on several other packages, including,
graph and RBGL, both on Bioconductor (http://www.bioconductor.org/).
These dependencies are mandatory, that is, you actually need to have these
packages installed before using geoGraph. Also, it is better to make sure
you are using the latest versions of these packages. graph and RBGL are
no longer released on CRAN, although some outdated versions still persist
there. To make sure you are using the right package versions, use the
command installDep.geoGraph() while connected on the internet. Do
NOT use install.packages, or related functionalities from the interactive
menus. In all cases, the latest version of geoGraph can be found from
https://r-forge.r-project.org/projects/geograph/.

When loading the package, dependencies are also loaded:

> library(geoGraph)

Note: polygon geometry computations in maptools
depend on the package gpclib, which has a
restricted licence. It is disabled by default;
to enable gpclib, type gpclibPermit()

Checking rgeos availability as gpclib substitute:

2

http://www.bioconductor.org/
https://r-forge.r-project.org/projects/geograph/

FALSE

========================
geoGraph 1.0-0 is loaded
========================

> search()

[1] ".GlobalEnv" "package:geoGraph" "package:fields"
[4] "package:spam" "package:maptools" "package:lattice"
[7] "package:foreign" "package:sp" "package:RBGL"
[10] "package:graph" "package:datasets" "package:adegenet"
[13] "package:ade4" "package:MASS" "package:utils"
[16] "package:stats" "package:graphics" "package:grDevices"
[19] "package:methods" "Autoloads" "package:base"

The package is now ready to use.

2.2 Data representation

Data representation refers to the way a given type of data is handled by a
computer program. Two types of objects are used in geoGraph: gGraph, and
gData objects. Both objects are defined as formal (S4) classes and often have
methods for similar generic function (e.g., getNodes is defined for both objects).
Essentially, gGraph objects contain underlying layers of informations, including
a spatial grid and possibly node attributes, and covering the area of interest.
gData are sets of locations – like sampled sites, for instance – which have been
interfaced to a gGraph object, to allow further manipulations such as finding
paths on the grid between pairs of locations.

2.2.1 gGraph objects

The definition of the formal class gGraph can be obtained using:

> getClass("gGraph")

Class "gGraph" [package "geoGraph"]

Slots:

Name: coords nodes.attr meta graph
Class: matrix data.frame list graphNEL

and a new empty object can be obtained using the constructor:

> new("gGraph")

=== gGraph object ===

@coords: spatial coordinates of 0 nodes
lon lat

@nodes.attr: 0 nodes attributes
data frame with 0 columns and 0 rows

@meta: list of meta information with 0 items

@graph:
A graphNEL graph with undirected edges
Number of Nodes = 0
Number of Edges = 0

3

The documentation ?gGraph explains the basics about the object’s content.
In a nutshell, these objects are spatial grids with nodes and segments connecting
neighbouring nodes, and additional informations on the nodes or on the graph
itself. coords is a matrix of longitudes and latitudes of the nodes. nodes.attr
is a data.frame storing attributes of the nodes, such as habitat descriptors; each
row corresponds to a node of the grid, while each column corresponds to a
variable. meta is a list containing miscellanous informations about the graph
itself. There is no contraint applying to the components of the list, but some
typical components such as $costs or $colors will be recognised by certain
functions. For instance, you can specify plotting rules for representing a given
node attribute by a given color by defining a component $colors. Similarly,
you can associate costs to a given node attribute by defining a component
$costs. An example of this can be found in already existing gGraph objects.
For instance, worldgraph.10k is a graph of the world with approximately 10,000
nodes, and only on-land connectivity (i.e. no travelling on the seas).

> data(worldgraph.10k)
> worldgraph.10k

=== gGraph object ===

@coords: spatial coordinates of 10242 nodes
lon lat

1 -180.0000 90.00000
2 144.0000 -90.00000
3 -33.7806 27.18924
...

@nodes.attr: 1 nodes attributes
habitat

1 sea
2 sea
3 sea
...

@meta: list of meta information with 2 items
[1] "$colors" "$costs"

@graph:
A graphNEL graph with undirected edges
Number of Nodes = 10242
Number of Edges = 6954

> worldgraph.10k@meta

$colors
habitat color

1 sea blue
2 land green
3 mountain brown
4 landbridge light green
5 oceanic crossing light blue
6 deselected land lightgray

$costs
habitat cost

1 sea 100
2 land 1
3 mountain 10
4 landbridge 5
5 oceanic crossing 20
6 deselected land 100

4

Lastly, the graph component is a graphNEL object, which is the standard class
for graphs in the graph and RBGL packages. This object contains all information
on the connections between nodes, and the weights (costs) of these connections.

Four main gGraph are provided with geoGraph: rawgraph.10k,
rawgraph.40k, worldgraph.10k, and worldgraph.40k. These datasets are
available using the command data. The grid used in these datasets are the
best geometric approximation of a regular grid for the surface of a sphere. One
advantage of working with these grids is that we do not have to use a projection
for geographic coordinates, which is a usual issue in regular GIS.

The difference between rawgraphs and worldgraphs is that the first are
entirely connected, while in the second connections occur only on land. Numbers
‘10k’ and ‘40k’ indicate that the grids consist of roughly 10,000 and 40,000
nodes. For illustrative purposes, we will often use the 10k grids, since they
are less heavy to handle. For most large-scale applications, the 40k versions
should provide sufficient resolution. New gGraph can be constructed using the
constructor (new(...)), but this topic is not documented in this vignette.

2.2.2 gData objects

gData are essentially sets of locations that are interfaced with a gGraph object.
During this operation, each location is assigned to the closest node on the grid
of the gGraph, then allowing for travelling between locations using the grid.
Then, it is for instance possible to find the shortest path between two locations
through various types of habitats.

Like for gGraph, the content of the formal class gData can be obtained using:

> getClass("gData")

Class "gData" [package "geoGraph"]

Slots:

Name: coords nodes.id data gGraph.name
Class: matrix character ANY character

and a new empty object can be obtained using the constructor:

> new("gData")

=== gData object ===

@coords: spatial coordinates of 0 nodes
lon lat

@nodes.id: nodes identifiers
character(0)

@data: data
NULL

Associated gGraph:

5

As before, the description of the content of these objects can be found in
the documentation (?gData). coords is a matrix of xy (longitude/latitude)
coordinates in which each row is a location. nodes.id is vector of characters
giving the name of the vertices matching the locations; this is defined
automatically when creating a new gData, or using the function closestNode.
data is a slot storing data associated to the locations; it can be any type of
object, but a data.frame should cover most requirements for storing data. Note
that this object should be subsettable (i.e. the [operator should be defined),
so that data can be subsetted when subsetting the gData object. Lastly, the
slot gGraph.name contains the name of the gGraph object to which the gData

has been interfaced.

Contrary to gGraph objects, gData objects will frequently be constructed by
the user. In the next sections, we illustrate how we can build and use gData

objects from a set of locations.

3 Using geoGraph

An overview of the material implemented in the package is summarized the
package’s manpage, accessible via:

> `?`(geoGraph)

The html version of this manpage may be preferred to browse more easily the
content of geoGraph; it is accessible by typing:

> help("geoGraph", package = "geoGraph", html = TRUE)

To revert help back to text mode, simply type:

> options(htmlhelp = FALSE)

In the following, we go through various tasks that can be achieve using
geoGraph.

3.1 Importing geographic data

Geographic data consist of a set of locations, possibly accompanied by
additional information. For instance, one may want to study the migrations
amongst a set of biological populations with known geographic coordinates. In
geoGraph, geographic data are stored in gData objects. These objects match
locations to the closest nodes on a grid (a gGraph object), and store additional
data if needed.

As a toy example, let us consider four locations: Bordeaux (France), London
(UK), Malaga (Spain), and Zagreb (Croatia). Since we will be working with a
crude grid (10,000 nodes), locations need not be exact. We enter the longitudes
and latitudes (in this order, that is, xy coordinates) of these cities in decimal
degrees, as well as approximate population sizes:

6

> Bordeaux <- c(-1, 45)
> London <- c(0, 51)
> Malaga <- c(-4, 37)
> Zagreb <- c(16, 46)
> cities.dat <- rbind.data.frame(Bordeaux, London, Malaga, Zagreb)
> colnames(cities.dat) <- c("lon", "lat")
> cities.dat$pop <- c(1e+06, 1.3e+07, 5e+05, 1200000)
> row.names(cities.dat) <- c("Bordeaux", "London", "Malaga", "Zagreb")
> cities.dat

lon lat pop
Bordeaux -1 45 1.0e+06
London 0 51 1.3e+07
Malaga -4 37 5.0e+05
Zagreb 16 46 1.2e+06

We load a gGraph object which contains the grid that will support the data:

> data(worldgraph.10k)
> worldgraph.10k

=== gGraph object ===

@coords: spatial coordinates of 10242 nodes
lon lat

1 -180.0000 90.00000
2 144.0000 -90.00000
3 -33.7806 27.18924
...

@nodes.attr: 1 nodes attributes
habitat

1 sea
2 sea
3 sea
...

@meta: list of meta information with 2 items
[1] "$colors" "$costs"

@graph:
A graphNEL graph with undirected edges
Number of Nodes = 10242
Number of Edges = 6954

> plot(worldgraph.10k)

7

(we could use worldgraph.40k for a better resolution). In this figure, each node
is represented with a color depending on the habitat type, either ’sea’ (blue) or
’land’ (green). We are going to interface the cities data with this grid; to do so,
we create a gData object using new (see ?gData object):

> cities <- new("gData", coords = cities.dat[, 1:2], data = cities.dat[,
+ 3, drop = FALSE], gGraph.name = "worldgraph.10k")
> cities

=== gData object ===

@coords: spatial coordinates of 4 nodes
lon lat

1 -1 45
2 0 51
3 -4 37
...

@nodes.id: nodes identifiers
1 2 3

"5774" "6413" "4815"
...

@data: 4 data
pop

Bordeaux 1.0e+06
London 1.3e+07
Malaga 5.0e+05
...

Associated gGraph: worldgraph.10k

> plot(cities, type = "both", reset = TRUE)
> plotEdges(worldgraph.10k)

8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

This figure illustrates the matching of original locations (black crosses) to nodes
of the grid (red circles). As we can see, an issue occured for Bordeaux, which
has been assigned to a node in the sea (in blue). Locations can be re-assigned to
nodes with restrictions for some node attribute values using closestNode; for
instance, here we constrain matching nodes to have an habitat value (defined
as node attribute in worldgraph.10k) equalling land (green points):

> cities <- closestNode(cities, attr.name = "habitat", attr.value = "land")
> plot(cities, type = "both", reset = TRUE)
> plotEdges(worldgraph.10k)

9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Now, all cities have been assigned to a ‘land’ node of the grid (again, better
accuracy will be gained on 40k or finer grids - we use 10k for illustrative purposes
only). Content of cities can be accessed via various accessors (see ?gData).
For instance, we can retrieve original locations, assigned nodes, and stored data
using:

> getCoords(cities)

lon lat
5775 -1 45
6413 0 51
4815 -4 37
7699 16 46

> getNodes(cities)

5775 6413 4815 7699
"5775" "6413" "4815" "7699"

> getData(cities)

pop
Bordeaux 1.0e+06
London 1.3e+07
Malaga 5.0e+05
Zagreb 1.2e+06

10

We can also get the coordinates of the matching nodes (i.e., red circle on previous
figure) using:

> getCoords(cities, original = FALSE)

lon lat
5775 1.001791e-05 43.73025
6413 1.001791e-05 51.37555
4815 -3.787658e+00 37.74879
7699 1.547808e+01 46.73633

More interestingly, we can now retrieve all the geographic information contained
in the underlying grid (i.e., gGraph object) as node attributes:

> getNodesAttr(cities)

habitat
5775 land
6413 land
4815 land
7699 land

In this example, the information stored in worldgraph.10k is rather crude:
habitat only distinguishes the land from the sea. However, more complex
habitat information could be incorporated, for instance from GIS shapefiles (see
dedicated section below).

3.2 Visualizing data

An essential aspect of spatial analysis lies in visualizing the data. In geoGraph,
the spatial grids (gGraph) and spatial data (gData) can be plotted and browsed
using a variety of functions.

3.2.1 Plotting gGraph objects

Displaying a gGraph object is done through plot and points functions. The
first opens a new plotting region, while the second draws in the current plotting
region; functions have otherwise similar arguments (see ?plot.gGraph).

By default, plotting a gGraph displays the grid of nodes overlaying a shapefile
(by default, the landmasses). Edges can be plotted at the same time (argument
edges), or added afterwards using plotEdges. If the gGraph object possesses
an adequately formed @meta$colors component, the colors of the nodes are
chosen according to the node attributes and the color scheme specified in
@meta$colors. Alternatively, the color of the nodes can be specified via the
col argument in plot/points.

Here is an example using worldgraph.10k:

> data(worldgraph.10k)
> worldgraph.10k@meta$colors

11

habitat color
1 sea blue
2 land green
3 mountain brown
4 landbridge light green
5 oceanic crossing light blue
6 deselected land lightgray

> head(getNodesAttr(worldgraph.10k))

habitat
1 sea
2 sea
3 sea
4 sea
5 sea
6 sea

> table(getNodesAttr(worldgraph.10k))

deselected land land sea
290 2632 7320

> plot(worldgraph.10k, reset = TRUE)
> title("Default plotting of worldgraph.10k")

It may be worth noting that plotting gGraph objects involves plotting a fairly
large number of points and edges. On some graphical devices, the resulting
plotting can be slow. For instance, one may want to disable cairo under linux:
this graphical device yields better graphics than Xlib, but at the expense of
increase computational time. To switch to Xlib, type:

> X11.options(type = "Xlib")

and to revert to cairo, type:

> X11.options(type = "cairo")

12

3.2.2 Zooming in and out, sliding, etc.

In practice, it is often useful to be able to peer at specific regions, and more
generally to navigate inside the graphical representation of the data. For this,
we can use the interactive functions geo.zoomin, geo.zoomout, geo.slide,
geo.back, geo.bookmark, and geo.goto. The zoom and slide functions require
to left-click on the graphics to zoom in, zoom out, or slide to adjacent areas; in
all cases, a right click ends the function. Also note that geo.zoomin can accept
an argument specifying a rectangular region, which will be adapted by the
function to fit best a square area with similar position and centre, and zoom
to this area (see ?geo.zoomin). geo.bookmark and geo.goto respectively set
and go to a bookmark, i.e. a tagged area. This is most useful when one has to
switch between distant areas repeatedly.

Here are some examples based on the previous plotting of
worldgraph.10k:Zooming in:

> geo.zoomin()

Zooming out:

> geo.zoomout()

13

Sliding to the east:

> geo.slide()

14

One important thing which makes plotting gGraph objects different from
most other plotting in R is that geoGraph keeps the changes made to the plotting
area in memory. This allows to undo one or several moves using geo.back.
Moreover, even if the graphical device is killed, plotting again a gGraph will
use the old parameters by default. To disable this behavior, set the argument
reset=TRUE when calling upon plot. Technically, this ’plotting memory’ is
implemented by storing plotting information in an environment defined as the
hidden variable .geoGraphEnv:
> .geoGraphEnv

<environment: 0x551e0d8>

> ls(env = .geoGraphEnv)

[1] "bookmarks" "last.plot" "last.plot.param" "last.points"
[5] "psize" "sticky.points" "usr" "zoom.log"

> get("last.plot", .geoGraphEnv)

plot(worldgraph.10k, reset = TRUE)

It is recommended not to modify these objects directly, unless you really know
what you are doing. In any case, plotting a gGraph object with argument
reset=TRUE will remove previous plotting history and undo possible wrong
manipulations.

15

3.2.3 Plotting gData objects

gData objects are by default plotted overlaying the corresponding gGraph. For
instance, using the cities example from above:

> plot(cities, reset = TRUE)
> text(getCoords(cities), rownames(getData(cities)))

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bordeaux

London

Malaga

Zagreb

Note the argument reset=TRUE, which tells the plotting function to adapt the
plotting area to the geographic extent of the dataset.

To plot additional information, it can be useful to extract the spatial
coordinates from the data. This is achieved by getCoords. This method takes
an extra argument original, which is TRUE if original spatial coordinates are
seeked, or FALSE for coordinates of the nodes on the grid. We can use this to
represent, for instance, the population sizes for the different cities:

> plot(cities, reset = TRUE)
> par(xpd = TRUE)
> text(getCoords(cities) + -0.5, rownames(getData(cities)))
> symbols(getCoords(cities)[, 1], getCoords(cities)[, 2], circ = sqrt(unlist(getData(cities))),
+ inch = 0.2, bg = transp("red"), add = TRUE)

16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bordeaux

London

Malaga

Zagreb

3.3 Editing gGraphs

Editing graphs is an essential task in geoGraph. While available gGraph objects
provide a basis to work with (see ?worldgraph.10k), one may want to adapt a
graph to a specific case. For instance, connectivity should be defined according
to biological knowledge of the organism under study. gGraph can be modified in
different ways: by changing the connectivity, the costs of edges, or the attribute
values.

3.3.1 Changing the global connectivity of a gGraph

There are two main ways of changing the connectivity of a gGraph, which match
two different objectives. The first approach is to perform global and systematic
changes of the connectivity of the graph. Typically, one will want to remove all
connections over a given type of landscape, which is uncrossable by the organism
under study. Let’s assume we are interested in saltwater fishes. To model fish
dispersal, we have to define a graph which connects only nodes overlaying the
sea. We load the gGraph object rawgraph.10k, and zoom in to a smaller area
(Madagascar) to illustrate changes in connectivity:

> data(rawgraph.10k)
> geo.zoomin(c(35, 54, -26, -10))
> plotEdges(rawgraph.10k)

17

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

We shall set a bookmark for this area, in case we would want to get back to this
place later on:

> geo.bookmark("madagascar")

Bookmark ' madagascar 'saved.

What we now want to do is remove all but sea-sea connections. To do so, the
easiest approach is to i) define costs for the edges based on habitat, with land
being given large costs and ii) remove all edges with large costs.

Costs of a given node attribute (here, ‘habitat’) are indicated in the
@meta$costs slot:

> rawgraph.10k@meta$costs

habitat cost
1 sea 100
2 land 1
3 mountain 10
4 landbridge 5
5 oceanic crossing 20
6 deselected land 100

> newGraph <- rawgraph.10k
> newGraph@meta$costs[2:6, 2] <- 100
> newGraph@meta$costs[1, 2] <- 1
> newGraph@meta$costs

18

habitat cost
1 sea 1
2 land 100
3 mountain 100
4 landbridge 100
5 oceanic crossing 100
6 deselected land 100

We have just changed the costs associated to habitat type, but this change is
not yet effective on edges between nodes. We use setCosts to set the cost of
an edge to the average of the costs of its nodes:

> newGraph <- setCosts(newGraph, attr.name = "habitat")
> plot(newGraph, edge = TRUE)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

On this new graph, we represent the edges with a width inversely
proportional to the associated cost; that is, bold lines for easy travelling and
light edges/dotted lines for more costly mouvement. This is not enough yet,
since travelling on land is still possible. However, we can tell geoGraph to
remove all edges associated to too strong a cost, as defined by a given threshold
(using dropDeadEdges). Here, only sea-sea connections shall be retained, that
is, edges with cost 1.

> newGraph <- dropDeadEdges(newGraph, thres = 1.1)
> plot(newGraph, edge = TRUE)

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Here we are: newGraph only contains connections in the sea. Note that,
although we restrained the plotting area to Madagascar, this change is effective
everywhere. For instance, travelling to the nort-west Australian coasts:

> geo.zoomin(c(110, 130, -27, -12))
> geo.bookmark("australia")

Bookmark ' australia 'saved.

20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.3.2 Changing local properties of a gGraph

A second approach to changing a gGraph is to refine the graph by hand, adding
or removing locally some connections, or altering the attributes of some nodes.
This can be necessary to connect components such as islands to the main
landmasses, or to correct erroneous data. Adding and removing edges from the
grid of a gGraph can be achieved by geo.add.edges and geo.remove.edges,
respectively. These functions are interactive, and require the user to select
individual nodes or a rectangular area in which edges are added or removed.
See ?geo.add.edges for more information on these functions. For instance, we
can remove a few odd connections in the previous graph, near the Australian
coasts (note that we have to save the changes using <-):

> geo.goto("autralia")
> newGraph <- geo.remove.edges(newGraph)

21

When adding connections within an area or in an entire graph, node addition
is based on another gGraph, i.e. only connections existing in another gGraph

serving as reference can be added to the current gGraph. For graphs based
on 10k or 40k grids, the raw graphs provided in geoGraph should be used,
(rawgraph.10k, rawgraph.40k), since they are fully connected.

In addition to changing grid connectivity, we may also want to modify the
attributes of specific nodes. This is again done interactively, using the function
geo.change.attr. For instance, here, we define a new value shalowwater

(plotted in light blue) for the attribute habitat, selecting affected nodes using
the ’area’ mode first, and refining the changes using the ’point’ mode:

> plot(newGraph, edge = TRUE)
> temp <- geo.change.attr(newGraph, mode = "area", attr.name = "habitat",
+ attr.value = "shallowwater", newCol = "deepskyblue")
> temp <- geo.change.attr(temp, attr.name = "habitat", attr.value = "shallowwater",
+ newCol = "deepskyblue")
> newGraph <- temp

> newGraph@meta$colors

habitat color
1 sea blue
2 land green
3 mountain brown
4 landbridge light green
5 oceanic crossing light blue
6 deselected land lightgray
7 shallowwater deepskyblue

22

> plot(newGraph, edge = TRUE)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Again, note that the changes made to the graph have to be save in an object
(using <-) to be effective.

3.4 Extracting information from GIS shapefiles

An important feature of geoGraph is serving as an interface between
geographic information system (GIS) layers and geographic data. As currently
implemented, geoGraph can extract information from shapefiles with the Arc
GIS (http://www.esri.com/software/arcgis/index.html) format, using the
function extractFromLayer. Here, we illustrate this procedure using the
shapefile world-countries.shp provided with the package. The GIS shapefile
is first read in R using readShapePoly from the maptools package:

> world.countries <- readShapePoly(system.file("files/shapefiles/world-countries.shp",
+ package = "geoGraph"))
> class(world.countries)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

23

http://www.esri.com/software/arcgis/index.html

> summary(world.countries)

Object of class SpatialPolygonsDataFrame
Coordinates:

min max
x -179.99917 181.79552
y -89.90145 84.92937
Is projected: NA
proj4string : [NA]
Data attributes:

WORCNTRY_I ID NAME ISO_2 ISO_NUM
Min. : 1.0 ABW : 1 Afghanistan : 1 AD : 1 10 : 1
1st Qu.: 60.5 AFG : 1 Albania : 1 AE : 1 100 : 1
Median :120.0 AGO : 1 Algeria : 1 AF : 1 104 : 1
Mean :120.0 AIA : 1 American Samoa: 1 AG : 1 108 : 1
3rd Qu.:179.5 ALB : 1 Andorra : 1 AI : 1 112 : 1
Max. :239.0 AND : 1 Angola : 1 AL : 1 116 : 1

(Other):233 (Other) :233 (Other):233 (Other):233
CAPITAL POP_1994 CONTINENT

N/A : 2 Min. :0.000e+00 Africa :59
Victoria : 2 1st Qu.:1.384e+05 Antarctica : 2
Abidjan : 1 Median :3.580e+06 Asia :73
Abu Dhabi: 1 Mean :2.244e+07 Australia : 2
Accra : 1 3rd Qu.:1.117e+07 Europe :51
(Other) :209 Max. :1.176e+09 North America:34
NA's : 23 South America:18

The summary of world.countries shows the data (‘attributes’) stored in
the layer. Let us assume that we are interested in retrieving continent
and country information for the worldgraph.10k object. Note that
extractFromLayer can extract information to other types of objects than
gGraph (see ?extractFromLayer)

> data(worldgraph.10k)
> summary(getNodesAttr(worldgraph.10k))

habitat
deselected land: 290
land :2632
sea :7320

> newGraph <- extractFromLayer(worldgraph.10k, layer = world.countries,
+ attr = c("CONTINENT", "NAME"))
> summary(getNodesAttr(newGraph))

habitat CONTINENT NAME
deselected land: 290 Asia : 957 Russian Federation: 339
land :2632 Africa : 607 Antartica : 241
sea :7320 North America: 430 United States : 192

South America: 359 Canada : 188
Antarctica : 241 China : 184
(Other) : 325 (Other) :1775
NA's :7323 NA's :7323

The new object newGraph is a gGraph which now includes, for each node of the
grid, the corresponding continent and country retrieved from the GIS layer. We
can use the newly acquired information for plotting newGraph, by defining new
color rules:

> temp <- unique(getNodesAttr(newGraph)$NAME)
> col <- c("transparent", rainbow(length(temp) - 1))
> colMat <- data.frame(NAME = temp, color = col)
> head(colMat)

24

NAME color
1 <NA> transparent
2 Antartica #FF0000FF
3 Saudi Arabia #FF0B00FF
4 Yemen #FF1500FF
5 Somalia #FF2000FF
6 China #FF2B00FF

> tail(colMat)

NAME color
140 Latvia #FF0040FF
141 Belarus #FF0035FF
142 Eritrea #FF002AFF
143 Djibouti #FF0020FF
144 East Timor #FF0015FF
145 Jordan #FF000BFF

> plot(newGraph, col.rules = colMat, reset = TRUE)

This information could in turn be used to define costs for travelling on the grid.
For instance, one could import habitat descriptors from a GIS, use these values
to formulate a habitat model, and derive costs for dispersal on the grid.

As soon as a GIS layer has been extracted to a gGraph, this information
becomes also available for any gData interfaced with this object. For instance,
we can re-use the cities example defined in a previous section, and interface
it with newGraph to retrieve continent and country information for the cities of
the dataset:

> cities.dat

lon lat pop
Bordeaux -1 45 1.0e+06
London 0 51 1.3e+07
Malaga -4 37 5.0e+05
Zagreb 16 46 1.2e+06

25

> cities <- new("gData", coords = cities.dat[, 1:2], data = cities.dat[,
+ 3, drop = FALSE], gGraph.name = "newGraph")
> cities <- closestNode(cities, attr.name = "habitat", attr.value = "land")
> getData(cities)

pop
Bordeaux 1.0e+06
London 1.3e+07
Malaga 5.0e+05
Zagreb 1.2e+06

> getNodesAttr(cities)

habitat CONTINENT NAME
5775 land Europe France, Metropolitan
6413 land Europe United Kingdom
4815 land Europe Spain
7699 land Europe Austria

3.5 Finding least-cost paths

One of the most useful applications of geoGraph is the research of least-cost
paths between couples of locations. This can be achieved using the functions
dijkstraFrom and dijkstraBetween on a gData object which contains all
the locations of interest. These functions return least-cost paths with the
format gPath. dijkstraFrom compute the paths from a given node of the
grid to all locations of the gData, while dijkstraBetween computes the paths
between pairs of locations of the gData. Below, we detail the example of
the documentation of these functions, which uses the famous dataset of native
Human populations, HGDP:

> data(hgdp)
> data(worldgraph.40k)
> hgdp

=== gData object ===

@coords: spatial coordinates of 52 nodes
lon lat

1 -3 59
2 39 44
3 40 61
...

@nodes.id: nodes identifiers
28179 11012 22532

"26898" "11652" "22532"
...

@data: 52 data
Population Region Label n Latitude Longitude Genetic.Div

1 Orcadian EUROPE 1 15 59 -3 0.7258820
2 Adygei EUROPE 2 17 44 39 0.7297802
3 Russian EUROPE 3 25 61 40 0.7319749
...

Associated gGraph: worldgraph.40k

26

> plot(hgdp, reset = TRUE)

Populations of the dataset are shown by red circles, while the underlying grid
(worldgraph.40k) is represented with colors depending on habitat (blue: sea;
green: land; pink: coasts). Population genetics predicts that genetic diversity
within populations should decay as populations are located further away from
the geographic origin of the species. Here, we verify this relationship for a
theoretical origin in Addis abeba, Ethiopia. We shall seek all paths through
landmasses to the HGDP populations.

First, we check that all populations are connected on the grid using
isConnected:

> isConnected(hgdp)

[1] TRUE

Note that in practice, we may often want to assess graphically the connectivity
of the underlying grid, especially if not all locations of the gData are connected.
This can be done using connectivityPlot, which has methods for both gGraph

and gData, and represents different connected components using different colors.
For instance, for worldgraph.10k:

> data(worldgraph.10k)
> connectivityPlot(worldgraph.10k, edges = TRUE, seed = 1)

> geo.zoomin(c(90, 150, 18, -25))
> title("Different connected components\n in worldgraph.10k")

27

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Different connected components
 in worldgraph.10k

Since all locations in hgdp are connected, we can proceed further. We have
to set the costs of edges in the gGraph grid. To do so, we can choose between
i) strictly uniform costs (using dropCosts) ii) distance-based costs – roughly
uniform – (using setDistCosts) or iii) attribute-driven costs (using setCosts).

We shall first illustrate the strictly uniform costs. After setting a gGraph

with uniform costs, we use dijkstraFrom to find the shortest paths between
Addis abeba and the populations of hgdp:

> myGraph <- dropCosts(worldgraph.40k)
> hgdp@gGraph.name <- "myGraph"
> addis <- cbind(38, 9)
> ori <- closestNode(myGraph, addis)
> paths <- dijkstraFrom(hgdp, ori)

The object paths contains the identified paths, which are stored as a list with
class gPath (see ?gPath). Paths can be plotted easily:

> addis <- as.vector(addis)
> plot(newGraph, col = NA, reset = TRUE)
> plot(paths)
> points(addis[1], addis[2], pch = "x", cex = 2)
> text(addis[1] + 35, addis[2], "Addis abeba", cex = 0.8, font = 2)
> points(hgdp, col.node = "black")

28

In this graph, each path is plotted with a different color, but several paths
overlap in several places. We can extract the distances from the ‘origin’ using
as.dist.gPath, and then examine the relationship between genetic diversity
within populations (stored in hgdp) and the distance from the origin:

> div <- getData(hgdp)$Genetic.Div
> dgeo.unif <- as.dist.gPath(paths, res.type = "vector")
> plot(div ~ dgeo.unif, xlab = "Geographic distance (arbitrary units)",
+ ylab = "Genetic diversity")
> lm.unif <- lm(div ~ dgeo.unif)
> abline(lm.unif, col = "red")
> summary(lm.unif)

Call:
lm(formula = div ~ dgeo.unif)

Residuals:
Min 1Q Median 3Q Max

-0.0732681 -0.0066024 0.0007424 0.0101509 0.0544886

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.697e-01 4.575e-03 168.24 <2e-16
dgeo.unif -8.389e-04 5.307e-05 -15.81 <2e-16

Residual standard error: 0.01851 on 50 degrees of freedom
Multiple R-squared: 0.8333, Adjusted R-squared: 0.8299
F-statistic: 249.9 on 1 and 50 DF, p-value: < 2.2e-16

> title("Genetic diversity vs geographic distance \n uniform costs ")

29

●
● ●

●

●●
●

●●
●

●

● ●● ●●

●

●
●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

● ●

●

● ●
●

●
●● ● ●

●

●

●

●●

●

●

50 100 150 200

0.
55

0.
60

0.
65

0.
70

0.
75

Geographic distance (arbitrary units)

G
en

et
ic

 d
iv

er
si

ty

Genetic diversity vs geographic distance
 uniform costs

Alternatively, we can use costs based on habitat. As a toy example, we will
consider that coasts are four times more favourable for dispersal than the rest
of the landmasses. We define these new costs, and then compute and plot the
corresponding shortest paths:

> myGraph@meta$costs[7,] <- c("coast", 0.25)
> myGraph@meta$costs

habitat cost
1 sea 100
2 land 1
3 mountain 10
4 landbridge 5
5 oceanic crossing 20
6 deselected land 100
7 coast 0.25

> myGraph <- setCosts(myGraph, attr.name = "habitat")
> paths.2 <- dijkstraFrom(hgdp, ori)

> plot(newGraph, col = NA, reset = TRUE)
> plot(paths.2)
> points(addis[1], addis[2], pch = "x", cex = 2)
> text(addis[1] + 35, addis[2], "Addis abeba", cex = 0.8, font = 2)
> points(hgdp, col.node = "black")

30

The new paths are slightly different from the previous ones. We can examine
the new relationship with genetic distance:

> dgeo.hab <- as.dist.gPath(paths.2, res.type = "vector")
> plot(div ~ dgeo.hab, xlab = "Geographic distance (arbitrary units)",
+ ylab = "Genetic diversity")
> lm.hab <- lm(div ~ dgeo.hab)
> abline(lm.hab, col = "red")
> summary(lm.hab)

Call:
lm(formula = div ~ dgeo.hab)

Residuals:
Min 1Q Median 3Q Max

-0.111832 -0.009761 0.001327 0.012163 0.064126

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.770137 0.007174 107.358 < 2e-16
dgeo.hab -0.001421 0.000145 -9.795 3.21e-13

Residual standard error: 0.02653 on 50 degrees of freedom
Multiple R-squared: 0.6574, Adjusted R-squared: 0.6505
F-statistic: 95.94 on 1 and 50 DF, p-value: 3.214e-13

> title("Genetic diversity vs geographic distance \n habitat costs ")

31

●
● ●

●

●●
●

●●
●

●

● ●● ●●

●

●
●●

●

●

●

●

●

●

●
●
●●

●
●

●
●

●●

●

● ●
●

●
●● ● ●

●

●

●

●●

●

●

20 40 60 80 100 120

0.
55

0.
60

0.
65

0.
70

0.
75

Geographic distance (arbitrary units)

G
en

et
ic

 d
iv

er
si

ty

Genetic diversity vs geographic distance
 habitat costs

Of course, the distinction between coasts and inner landmasses is a somewhat
poor description of habitat. In practice, complex habitat models can be used as
simply.

32

	Introduction
	First steps
	Installing the package
	Data representation
	gGraph objects
	gData objects

	Using geoGraph
	Importing geographic data
	Visualizing data
	Plotting gGraph objects
	Zooming in and out, sliding, etc.
	Plotting gData objects

	Editing gGraphs
	Changing the global connectivity of a gGraph
	Changing local properties of a gGraph

	Extracting information from GIS shapefiles
	Finding least-cost paths

