<table cellspacing="0" cellpadding="0" border="0" ><tr><td valign="top" style="font: inherit;"><font face="arial" size="2">Dear</font><div style="font-family: arial; font-size: 10pt; "><br></div><div><font face="arial" size="2">I get difficulties to estimate the significance level for pairwise.fst values. It is running on a PC for a month no output yet. Moreover, I couldn't able to run a parallel computation as this does not allow to perform this. The input data is the one I used for STRUCTURE analysis. My script is</font></div><div><font face="arial" size="2"><br></font></div><div><font face="arial" size="2"><div>library (adegenet)</div><div><br></div><div>library(ade4)</div><div><br></div><div>ttt<- read.structure(file="oh.str", n.ind=94, n.loc=47486, onerowperind=TRUE, col.lab=NULL, col.pop=1, ask=FALSE)</div><div>x <- ttt[sample(1:nrow(ttt@tab), )] </div><div>mat.obs <- pairwise.fst(x,
res.type="matrix") </div><div>NBPERM <- 1000 </div><div>mat.perm <- lapply(1:NBPERM, function(i) pairwise.fst(x, pop=sample(pop(x)), res.type="matrix"))</div><div><br></div><div>meanmatobs= mean(c(mat.obs[1,2] < na.omit(sapply(1:NBPERM, function(i) mat.perm[[i]][1,2])), TRUE))</div><div><br></div><div><br></div><div>test12 <- as.randtest(na.omit(sapply(1:NBPERM, function(i) mat.perm[[i]][1,2])), mat.obs[1,2], alter="greater")</div><div>test12</div><div>Monte-Carlo test</div><div>Call: as.randtest(sim = na.omit(sapply(1:NBPERM, function(i) mat.perm[[i]][1, </div><div> 2])), obs = mat.obs[1, 2], alter = "greater")</div><div><br></div><div><br></div><div>allTests <- list()</div><div> for(i in 1:(nrow(mat.obs)-1)){</div><div> for(j in 2:nrow(mat.obs)){</div><div> allTests[[paste(rownames(mat.obs)[i],rownames(mat.obs)[j],sep="-")]] <- as.randtest(na.omit(sapply(1:NBPERM, function(k)
mat.perm[[k]][i,j])), mat.obs[i,j], alter="greater")</div><div> }</div><div>}</div><div><br></div><div>Any help is appreciated</div></font></div></td></tr></table>